Print Settings
 

OSPPARIS 53: Electricity, Magnetism and Optics with Laboratory

How are electric and magnetic fields generated by static and moving charges, and what are their applications? How is light related to electromagnetic waves? Represent and analyze electric and magnetic fields to understand electric circuits, motors, and generators. Wave nature of light to explain interference, diffraction, and polarization phenomena; geometric optics to understand how lenses and mirrors form images. Workings and limitations of optical systems such as the eye, corrective vision, cameras, telescopes, and microscopes. Discussions based on the language of algebra and trigonometry. An integrated version of Physics 23 and 24, targeted to premedical students who are studying abroad with integrated labs. Prerequisite: PHYSICS 21 or 21S. This course meets the STEM track requirement for the Paris Program during Winter Quarter 2019-2020.
Terms: Win | Units: 5 | UG Reqs: WAY-SMA

PHYSICS 23: Electricity, Magnetism, and Optics

How are electric and magnetic fields generated by static and moving charges, and what are their applications? How is light related to electromagnetic waves? Students learn to represent and analyze electric and magnetic fields to understand electric circuits, motors, and generators. The wave nature of light is used to explain interference, diffraction, and polarization phenomena. Geometric optics is employed to understand how lenses and mirrors form images. These descriptions are combined to understand the workings and limitations of optical systems such as the eye, corrective vision, cameras, telescopes, and microscopes. Discussions based on the language of algebra and trigonometry. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite: PHYSICS 21 or PHYSICS 21S.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Schleier-Smith, M. (PI)

PHYSICS 24: Electricity, Magnetism, and Optics Laboratory

Guided hands-on exploration of concepts in electricity and magnetism, circuits and optics with an emphasis on student predictions, observations and explanations. Introduction to multimeters and oscilloscopes. Pre- or corequisite: PHYS 23.
Terms: Win | Units: 1
Instructors: ; Devin, J. (PI)
© Stanford University | Terms of Use | Copyright Complaints