## Results for EE263 |
7 courses |

Convex sets, functions, and optimization problems. The basics of convex analysis and theory of convex programming: optimality conditions, duality theory, theorems of alternative, and applications. Least-squares, linear and quadratic programs, semidefinite programming, and geometric programming. Numerical algorithms for smooth and equality constrained problems; interior-point methods for inequality constrained problems. Applications to signal processing, communications, control, analog and digital circuit design, computational geometry, statistics, machine learning, and mechanical engineering. Prerequisite: linear algebra such as EE263, basic probability.

Terms: Win, Sum
| Units: 3

Digital photography and basic image processing, convolutional neural networks for image processing, denoising, deconvolution, single pixel imaging, inverse problems in imaging, proximal gradient methods, introduction to wave optics, time-of-flight imaging, end-to-end optimization of optics and imaging processing. Emphasis is on applied image processing and solving inverse problems using classic algorithms, formal optimization, and modern artificial intelligence techniques. Students learn to apply material by implementing and investigating image processing algorithms in Python. Term project. Recommended: EE261, EE263, EE278.

Last offered: Winter 2022
| Units: 3

Applied linear algebra and linear dynamical systems with applications to circuits, signal processing, communications, and control systems. Topics: least-squares approximations of over-determined equations, and least-norm solutions of underdetermined equations. Symmetric matrices, matrix norm, and singular-value decomposition. Eigenvalues, left and right eigenvectors, with dynamical interpretation. Matrix exponential, stability, and asymptotic behavior. Multi-input/multi-output systems, impulse and step matrices; convolution and transfer-matrix descriptions. Control, reachability, and state transfer; observability and least-squares state estimation. Prerequisites: Linear algebra and matrices as in ENGR 108 or MATH 104; ordinary differential equations and Laplace transforms as in EE 102B or CME 102.

Terms: Aut, Sum
| Units: 3

Instructors: ; Lall, S. (PI); Landolfi, N. (PI); Afsharrad, A. (TA); Devanathan, N. (TA); Gudapati, N. (TA)

Convex sets, functions, and optimization problems. The basics of convex analysis and theory of convex programming: optimality conditions, duality theory, theorems of alternative, and applications. Least-squares, linear and quadratic programs, semidefinite programming, and geometric programming. Numerical algorithms for smooth and equality constrained problems; interior-point methods for inequality constrained problems. Applications to signal processing, communications, control, analog and digital circuit design, computational geometry, statistics, machine learning, and mechanical engineering. Prerequisite: linear algebra such as EE263, basic probability.

Terms: Win, Sum
| Units: 3

Digital photography and basic image processing, convolutional neural networks for image processing, denoising, deconvolution, single pixel imaging, inverse problems in imaging, proximal gradient methods, introduction to wave optics, time-of-flight imaging, end-to-end optimization of optics and imaging processing. Emphasis is on applied image processing and solving inverse problems using classic algorithms, formal optimization, and modern artificial intelligence techniques. Students learn to apply material by implementing and investigating image processing algorithms in Python. Term project. Recommended: EE261, EE263, EE278.

Last offered: Winter 2022
| Units: 3

Learning algorithms for adaptive digital filters. Self-optimization. Wiener filter theory. Quadratic performance functions, their eigenvectors and eigenvalues. Speed of convergence. Asymptotic performance versus convergence rate. Applications of adaptive filters to statistical prediction, process modeling, adaptive noise canceling, adaptive antenna arrays, adaptive inverse control, and equalization and echo canceling in modems. Artificial neural networks. Cognitive memory/human and machine. Natural and artificial synapses. Hebbian learning. The Hebbian-LMS algorithm. Theoretical and experimental research projects in adaptive filter theory, communications, audio systems, and neural networks. Biomedical research projects, supervised jointly by EE and Medical School faculty. Recommended: EE263, EE264, EE278.

Last offered: Spring 2021
| Units: 3

Techniques and models for signal, data and information processing, with emphasis on incomplete data, non-ordered index sets and robust low-complexity methods. Linear models; regularization and shrinkage; dimensionality reduction; streaming algorithms; sketching; clustering, search in high dimension; low-rank models; principal component analysis. Applications include: positioning from pairwise distances; distributed sensing; measurement/traffic monitoring in networks; finding communities/clusters in networks; recommendation systems; inverse problems. Prerequisites: EE278 and EE263 or equivalent. Recommended but not required: EE378A

Last offered: Winter 2021
| Units: 3