Print Settings
 

CS 251: Cryptocurrencies and blockchain technologies

For advanced undergraduates and for graduate students.  The potential applications for Bitcoin-like technologies is enormous.  The course will cover the technical aspects of cryptocurrencies, blockchain technologies, and distributed consensus. Students will learn how these systems work, and how to engineer secure software that interacts with Blockchains like Bitcoin, Ethereum, and others. Prerequisite: CS110. Recommended: CS255.
Terms: Aut | Units: 3

CS 352B: Blockchain Governance

This course offers an overview of blockchain governance and Decentralized Autonomous Organizations (DAOs), with topics including DAO tooling, on-chain and off-chain voting, delegation, constitutional design, alternative governance mechanisms, identity, and privacy. We will cover these topics and others from technical, social science, and legal perspectives, and we will include a range of guests from the web3 space as well as several speakers who are on the frontiers of DAO research. The course presumes some basic familiarity with blockchain and cryptocurrencies, but deep technical facility is not required, i.e., successful completion of CS 251 or LAW 1043 is more than enough. Elements used in grading: Homework and papers. There are no examinations. Grading elements and the course itself are designed so that students with diverse expertise and backgrounds (law, technical, business, etc.) have an equal opportunity to do well and have a powerful learning experience. Cross-listed with LAW 1078. The course will be taught in law school classrooms. In addition to the listed Stanford faculty instructors and the various guest speakers, Silke Noa Elrifai, a crypto lawyer and mathematician with a deep background in actual DAO projects and currently a Visiting Scholar at Stanford, will be the primary instructor for several classes and will play an integral role in the course.
Terms: Spr | Units: 3

EE 374: Blockchain Foundations

A detailed exploration of the foundations of blockchains, What blockchains are, how they work, and why they are secure. Transactions, blocks, chains, proof-of-work and stake, wallets, the UTXO model, accounts model, light clients. Throughout the course, students build their own nodes from scratch. Security is defined and rigorously proved. The course is heavy on both engineering and theory. This course is a deeper investigation into the consensus layer of blockchains while CS 251 is a broader investigation, and it can be taken with or without having taken CS 251. Prerequisites: CS106 or equivalent, significant programming experience; CS103 or equivalent; CS109 or EE178 or equivalent.
Last offered: Winter 2023 | Units: 3

LAW 1078: Blockchain Governance

Blockchain Governance (1078): This course offers an overview of blockchain governance and Decentralized Autonomous Organizations (DAOs), with topics including DAO tooling, on-chain and off-chain voting, delegation, constitutional design, alternative governance mechanisms, identity, and privacy. We will cover these topics and others from technical, social science, and legal perspectives, and we will include a range of guests from the web3 space as well as several speakers who are on the frontiers of DAO research. The course presumes some basic familiarity with blockchain and cryptocurrencies, but deep technical facility is not required, i.e., successful completion of CS 251 or LAW 1043 is more than enough. Elements used in grading: Homework and papers. There are no examinations. Grading elements and the course itself are designed so that students with diverse expertise and backgrounds (law, technical, business, etc.) have an equal opportunity to do well and have a powerful learning experience. Cross-listed with CS 352B. The course will be taught in law school classrooms. In addition to the listed Stanford faculty instructors and the various guest speakers, Silke Noa Elrifai, a crypto lawyer and mathematician with a deep background in actual DAO projects and currently a Visiting Scholar at Stanford, will be the primary instructor for several classes and will play an integral role in the course. Cross-listed with Computer Science 352B.
Terms: Spr | Units: 3

LAW 4004: Cybersecurity: A Legal and Technical Perspective

This class will use the case method to teach basic computer, network, and information security from technology, law, policy, and business perspectives. Using real world topics, we will study the technical, legal, policy, and business aspects of an incident or issue and its potential solutions. The case studies will be organized around the following topics: vulnerability disclosure, state sponsored sabotage, corporate and government espionage, credit card theft, theft of embarrassing personal data, phishing and social engineering attacks, denial of service attacks, attacks on weak session management and URLs, security risks and benefits of cloud data storage, wiretapping on the Internet, and digital forensics. Students taking the class will learn about the techniques attackers use, applicable legal prohibitions, rights, and remedies, the policy context, and strategies in law, policy and business for managing risk. Grades will be based on class participation, two reflection papers, and a final exam. Special Instructions: This class is limited to 65 students, with an effort made to have students from SLS (30 students will be selected by lottery) and students from Computer Science (30 students) and International Policy Studies (5 students). Elements used in grading: Class Participation (20%), Written Assignments (40%), Final Exam (40%). Cross-listed with Computer Science (CS 203) and International Policy Studies (IPS 251).
Last offered: Spring 2018 | Units: 2
© Stanford University | Terms of Use | Copyright Complaints