Print Settings
 

GEOPHYS 20N: Predicting Volcanic Eruptions

The physics and chemistry of volcanic processes and modern methods of volcano monitoring. Volcanoes as manifestations of the Earth's internal energy and hazards to society. How earth scientists better forecast eruptive activity by monitoring seismic activity, bulging of the ground surface, and the discharge of volcanic gases, and by studying deposits from past eruptions. Focus is on the interface between scientists and policy makers and the challenges of decision making with incomplete information. Field trip to Mt. St. Helens, site of the 1980 eruption.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GEOPHYS 54N: The Space Mission to Europa

Jupiter's icy moon Europa is a leading candidate in the search for life in our solar system outside of Earth. NASA's upcoming Europa Clipper mission would investigate the habitability of the moon using a suite of nine geophysical instruments. In this course, we will use the mission as a central text around which to explore the intersection of science, engineering, management, economics, culture, and politics involved in any modern big science enterprise.
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA
Instructors: ; Schroeder, D. (PI)

GEOPHYS 60N: Man versus Nature: Coping with Disasters Using Space Technology (EE 60N)

Preference to freshman. Natural hazards, earthquakes, volcanoes, floods, hurricanes, and fires, and how they affect people and society; great disasters such as asteroid impacts that periodically obliterate many species of life. Scientific issues, political and social consequences, costs of disaster mitigation, and how scientific knowledge affects policy. How spaceborne imaging technology makes it possible to respond quickly and mitigate consequences; how it is applied to natural disasters; and remote sensing data manipulation and analysis. GER:DB-EngrAppSci
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: ; Zebker, H. (PI)

GEOPHYS 70: The Water Course (EARTHSYS 104)

The Central Valley of California provides a third of the produce grown in the U.S., but has a desert climate, thus raising concerns about both food and water security. The pathway that water takes rainfall to the irrigation of fields (the water course) determines the quantity and quality of the available water. Working with various data sources (remote sensing, gauges, wells) allows us to model the water budget in the valley and explore the way in which recent droughts and increasing demand are impacting freshwater supplies.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GEOPHYS 80: The Energy-Water Nexus (EARTHSYS 140)

Energy, water, and food are our most vital resources constituting a tightly intertwined network: energy production requires water, transporting and treating water needs energy, producing food requires both energy and water. The course is an introduction to learn specifically about the links between energy and water. Students will look first at the use of water for energy production, then at the role of energy in water projects, and finally at the challenge in figuring out how to keep this relationship as sustainable as possible. Students will explore case examples and are encouraged to contribute examples of concerns for discussion as well as suggest a portfolio of sustainable energy options.
| Units: 3 | UG Reqs: WAY-AQR

GEOPHYS 90: Earthquakes and Volcanoes (EARTHSYS 113)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

GEOPHYS 110: Introduction to the foundations of contemporary geophysics (EARTHSYS 110)

Introduction to the foundations of contemporary geophysics. Topics drawn from broad themes in: whole Earth geodynamics, geohazards, natural resources, and enviroment. In each case the focus is on how the interpretation of a variety of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetics, and remote sensing) can be used to provide fundamental insight into the behavior of the Earth. Prerequisite: CME 100 or MA TH 51, or co-registration in either.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GEOPHYS 112: Exploring Geosciences with MATLAB

How to use MATLAB as a tool for research and technical computing, including 2-D and 3-D visualization features, numerical capabilities, and toolboxes. Practical skills in areas such as data analysis, regressions, optimization, spectral analysis, differential equations, image analysis, computational statistics, and Monte Carlo simulations. Emphasis is on scientific and engineering applications. Offered every year, autumn quarter.
Terms: Aut | Units: 1-3

GEOPHYS 118X: Disasters, Decisions, Development in Sustainable Urban Systems (ESS 118, ESS 218, GEOPHYS 218X, GS 118, GS 218, POLISCI 224A, PUBLPOL 118)

CEE 224X of the CEE 224XYZ SUS Project series is joining forces with D3: Disasters, Decisions, Development to offer D3+SUS, which will connect principles of sustainable urban systems with the challenge of increasing resilience in the San Francisco Bay Area. The project-based learning course is designed to align with the Resilient By Design | Bay Area Challenge (http://www.resilientbayarea.org/); students will learn the basic concepts of resilience and tools of risk analysis while applying those mindsets and toolsets to a collective research product delivered to the RBD community. Students who take D3+SUS are encouraged to continue on to CEE 224Y and CEE 224Z, in which teams will be paired with local partners and will develop interventions to improve the resilience of local communities. For more information, visit http://sus.stanford.edu/courses.
Terms: Aut | Units: 3-5

GEOPHYS 118Y: Sustainable Urban Systems Project (CEE 124Y, CEE 224Y, GEOPHYS 218Y)

Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Terms: Win | Units: 1-5

GEOPHYS 118Z: Sustainable Urban Systems Project (CEE 124Z, CEE 224Z, GEOPHYS 218Z)

Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Terms: Win, Spr | Units: 1-5

GEOPHYS 120: Ice, Water, Fire (GEOPHYS 220)

Introductory application of continuum mechanics to ice sheets and glaciers, water waves and tsunamis, and volcanoes. Emphasis on physical processes and mathematical description using balance of mass and momentum, combined with constitutive equations for fluids and solids. Designed for undergraduates with no prior geophysics background; also appropriate for beginning graduate students. Prerequisites: CME 100 or MATH 52 and PHYSICS 41 (or equivalent).
Last offered: Winter 2017 | Units: 3-5 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

GEOPHYS 122: Planetary Systems: Dynamics and Origins (GS 122, GS 222)

(Students with a strong background in mathematics and the physical sciences should register for 222.) Motions of planets and smaller bodies, energy transport in planetary systems, composition, structure and dynamics of planetary atmospheres, cratering on planetary surfaces, properties of meteorites, asteroids and comets, extrasolar planets, and planetary formation. Prerequisite: some background in the physical sciences, especially astronomy, geophysics, or physics. Students need instructor approval to take the course for 2 or 4 units.
Terms: Aut | Units: 2-4

GEOPHYS 130: Introductory Seismology

Introduction to seismology including: elasticity and the wave equation, P, S, and surface waves, dispersion, ray theory, reflection and transmission of seismic waves, seismic imaging, large-scale Earth structure, earthquake location, earthquake statistics and forecasting, magnitude scales, seismic source theory.
Last offered: Autumn 2016 | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GEOPHYS 141: Remote Sensing of the Oceans (EARTHSYS 141, EARTHSYS 241, ESS 141, ESS 241)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR

GEOPHYS 160: D^3: Disasters, Decisions, Development

This class connects the science behind natural disasters with the real-world constraints of disaster management and development. In each iteration of this class we will focus on a specific, disaster-prone location as case study. By collaborating with local stakeholders we will explore how science and engineering can make a make a difference in reducing disaster risk in the future. Offered every other year.
Last offered: Winter 2016 | Units: 3-5 | UG Reqs: WAY-AQR, WAY-SMA

GEOPHYS 162: Laboratory Methods in Geophysics (GEOPHYS 259)

Lab. Types of equipment used in experimental rock physics. Principles and measurements of geophysical properties such as porosity, permeability, acoustic wave velocity, and resistivity through lectures and laboratory experiments. Training in analytical project writing skills and understanding errors for assessing accuracy and variability of measured data. Students may investigate a scientific problem to support their own research. Prerequisites: Physics 45 (Light and Heat); and CME 100 (Vector Calculus).
Terms: Aut | Units: 3-4

GEOPHYS 165: Ice Penetrating Radar (GEOPHYS 230)

The purpose of this course is to provide an introduction to the physics, systems, processing, and analysis of ice penetrating radar, preparing students to use it as a quantitative research tool. Target students are graduates or advanced undergraduates in geophysics, glaciology, planetary science, or engineering with an interest in the use of radar to study glaciers, ice sheets, or icy planets.nPrerequisite: EE 142 or EE 242 or PHYS 43 or instructor consent.
Terms: Spr | Units: 1-3

GEOPHYS 171: Tectonics Field Trip

Long weekend field trip to examine large-scale features in the crust. Destinations may include the San Andreas fault, Mendocino Triple Junction, Sierra Nevada, and western Basin and Range province.
Last offered: Spring 2017 | Units: 1-3

GEOPHYS 181: Fluids and Flow in the Earth: Computational Methods (GEOPHYS 203)

Interdisciplinary problems involving the state and movement of fluids in crustal systems, and computational methods to model these processes. Examples of processes include: nonlinear, time-dependent flow in porous rocks; coupling in porous rocks between fluid flow, stress, deformation, and heat and chemical transport; percolation of partial melt; diagenetic processes; pressure solution and the formation of stylolites; and transient pore pressure in fault zones. MATLAB, Lattice-Boltzmann, and COMSOL Multiphysics. Term project. No experience with COMSOL Multiphysics required. Offered every other year, winter quarter.
Last offered: Winter 2017 | Units: 3

GEOPHYS 182: Reflection Seismology (GEOPHYS 222)

The principles of seismic reflection profiling, focusing on methods of seismic data acquisition and seismic data processing for hydrocarbon exploration.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci

GEOPHYS 183: Reflection Seismology Interpretation (GEOPHYS 223, GS 223)

The structural and stratigraphic interpretation of seismic reflection data, emphasizing hydrocarbon traps in two and three dimensions on industry data, including workstation-based interpretation. Lectures only, 1 unit. Prerequisite: 222, or consent of instructor. (Geophys 183 must be taken for a minimum of 3 units to be eligible for Ways credit).
Terms: Spr | Units: 1-4 | UG Reqs: WAY-SMA

GEOPHYS 184: Journey to the Center of the Earth (GEOPHYS 274, GS 107, GS 207)

The interconnected set of dynamic systems that make up the Earth. Focus is on fundamental geophysical observations of the Earth and the laboratory experiments to understand and interpret them. What earthquakes, volcanoes, gravity, magnetic fields, and rocks reveal about the Earth's formation and evolution.
Last offered: Winter 2014 | Units: 3 | UG Reqs: WAY-SMA

GEOPHYS 188: Basic Earth Imaging (GEOPHYS 210)

Echo seismogram recording geometry, head waves, moveout, velocity estimation, making images of complex shaped reflectors, migration by Fourier and integral methods. Anti-aliasing. Dip moveout. Computer labs. See http://sep.stanford.edu/sep/prof/. Offered every year, autumn quarter. n*The Geophys180 cross-listing is considered an advanced undergraduate course.
Terms: Aut | Units: 2-3

GEOPHYS 190: Near-Surface Geophysics

Introduction to geophysical methods that can be used for imaging and characterizing groundwater systems; modeling and interpretation of the data. This Cardinal Class will be structured around solving a problem currently faced by a community in the Central Valley of California: How to select a site that can be used to recharge the groundwater? Where is there sand and gravel? clay? Where will the water go? We will review data from the area and develop a plan for the acquisition of geophysical data to image sediment texture in the subsurface. Data will be acquired during a weekend field trip to the community. Each week includes two hours of lectures; plus one 1.5-hour lab that involves acquisition of field data, or computer modeling/analysis of datanPre-requisite: CME 100 or Math 51, or co-registration in either.n(Cardinal Course certified by the Haas Center)
Last offered: Spring 2017 | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

GEOPHYS 196: Undergraduate Research in Geophysics

Field-, lab-, or computer-based. Faculty supervision. Written reports.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit

GEOPHYS 197: Senior Thesis in Geophysics

For seniors writing a thesis based on Geophysics research in 196 or as a summer research fellow. Seniors defend the results of their research at a public oral presentation.
Terms: Aut, Win, Spr, Sum | Units: 3-5

GEOPHYS 198: Honors Program

Experimental, observational, or theoretical honors project and thesis in geophysics under supervision of a faculty member. Students who elect to do an honors thesis should begin planning it no later than Winter Quarter of the junior year. Prerequisites: department approval. Seniors defend the results of their research at a public oral presentation.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable 4 times (up to 15 units total)

GEOPHYS 199: Senior Seminar: Issues in Earth Sciences (GS 150)

Focus is on written and oral communication in a topical context. Topics from current frontiers in earth science research and issues of concern to the public. Readings, oral presentations, written work, and peer review.
Terms: Aut | Units: 3

GEOPHYS 201: Frontiers of Geophysical Research at Stanford: Faculty Lectures

Required for new students entering the department. Second-year and other graduate students may attend either for credit or as auditors. Department faculty and senior research staff introduce the frontiers of research problems and methods being employed or developed in the department and unique to department faculty and students: what the current research is, why the research is important, what methodologies and technologies are being used, and what the potential impact of the results might be. Offered every year, autumn quarter.
Terms: Aut | Units: 1
Instructors: ; Zebker, H. (PI)

GEOPHYS 202: Reservoir Geomechanics

Basic principles of rock mechanics and the state of stress and pore pressure in sedimentary basins related to exploitation of hydrocarbon and geothermal reservoirs. Mechanisms of hydrocarbon migration, exploitation of fractured reservoirs, reservoir compaction and subsidence, hydraulic fracturing, utilization of directional and horizontal drilling to optimize well stability.Given alternate years.
Last offered: Spring 2017 | Units: 3

GEOPHYS 203: Fluids and Flow in the Earth: Computational Methods (GEOPHYS 181)

Interdisciplinary problems involving the state and movement of fluids in crustal systems, and computational methods to model these processes. Examples of processes include: nonlinear, time-dependent flow in porous rocks; coupling in porous rocks between fluid flow, stress, deformation, and heat and chemical transport; percolation of partial melt; diagenetic processes; pressure solution and the formation of stylolites; and transient pore pressure in fault zones. MATLAB, Lattice-Boltzmann, and COMSOL Multiphysics. Term project. No experience with COMSOL Multiphysics required. Offered every other year, winter quarter.
Last offered: Winter 2017 | Units: 3

GEOPHYS 205: Effective Scientific Presentation and Public Speaking

The ability to present your work in a compelling, concise, and engaging manner will enhance your professional career. This course breaks down presentations into their key elements: the opening, body of the talk, closing, slide and poster graphics, Q&A, pacing, pauses, and voice modulation. The class is a series of several minute log stand-and-deliver exercises in which you get immediate class feedback and then re-do it on the fly. In addition, each participant will use their upcoming conference talk or poster (e.g., AGU, SEG), or upcoming job talk or funding pitch, as a final project. In addition to the class sessions, I will spend 60-90 min with each student individually. Everyone will come away a more skilled and confident speaker than they were before. Instructor: Ross S. Stein (Temblor.net, Emeritus USGS). The course syllabus can be found at http://temblor.net/team/ross-stein/
Terms: Aut | Units: 2
Instructors: ; Stein, R. (PI)

GEOPHYS 206: FLUID DYNAMICS OF THE SOLID EA

Introducton to fluid dynamical processes in the interior and on the surface of the Earth. The main focus of this course are viscous flow systems with different rheologies. Topics include solid-mantle convection, lava flows, creep in ice sheets, flow instabilities in solid-fluid mixtures and basic principles of fluid percolation through porous media.
| Units: 3

GEOPHYS 208: Unconventional Reservoir Geomechanics

This course will investigate oil and gas production from extremely low permeability reservoirs. Lectures and exercises will address 1) the physical and fluid transport properties of unconventional reservoir formations, 2) stimulation techniques such as hydraulic fracturing and 3) understanding microseismicity associated with hydraulic stimulation and induced seismicity associated with wastewater injection. Prerequisite: GEOPHYS 202 or concurrent enrollment in GEOPHYS 202.
Last offered: Spring 2017 | Units: 3

GEOPHYS 210: Basic Earth Imaging (GEOPHYS 188)

Echo seismogram recording geometry, head waves, moveout, velocity estimation, making images of complex shaped reflectors, migration by Fourier and integral methods. Anti-aliasing. Dip moveout. Computer labs. See http://sep.stanford.edu/sep/prof/. Offered every year, autumn quarter. n*The Geophys180 cross-listing is considered an advanced undergraduate course.
Terms: Aut | Units: 2-3

GEOPHYS 211: Environmental Soundings Image Estimation

Imaging principles exemplified by means of imaging geophysical data of various uncomplicated types (bathymetry, altimetry, velocity, reflectivity). Adjoints, back projection, conjugate-gradient inversion, preconditioning, multidimensional autoregression and spectral factorization, the helical coordinate, and object-based programming. Common recurring issues such as limited aperture, missing data, signal/noise segregation, and nonstationary spectra. See http://sep.stanford.edu/sep/prof/.
Terms: Win | Units: 3

GEOPHYS 217: Numerical Methods in Engineering and Applied Sciences (AA 214A, CME 207)

Scientific computing and numerical analysis for physical sciences and engineering. Advanced version of CME206 that, apart from CME206 material, includes nonlinear PDEs, multidimensional interpolation and integration and an extended discussion of stability for initial boundary value problems. Recommended for students who have some prior numerical analysis experience. Topics include: 1D and multi-D interpolation, numerical integration in 1D and multi-D including adaptive quadrature, numerical solutions of ordinary differential equations (ODEs) including stability, numerical solutions of 1D and multi-D linear and nonlinear partial differential equations (PDEs) including concepts of stability and accuracy. Prerequisites: linear algebra, introductory numerical analysis (CME 108 or equivalent).
Terms: Aut | Units: 3

GEOPHYS 218X: Disasters, Decisions, Development in Sustainable Urban Systems (ESS 118, ESS 218, GEOPHYS 118X, GS 118, GS 218, POLISCI 224A, PUBLPOL 118)

CEE 224X of the CEE 224XYZ SUS Project series is joining forces with D3: Disasters, Decisions, Development to offer D3+SUS, which will connect principles of sustainable urban systems with the challenge of increasing resilience in the San Francisco Bay Area. The project-based learning course is designed to align with the Resilient By Design | Bay Area Challenge (http://www.resilientbayarea.org/); students will learn the basic concepts of resilience and tools of risk analysis while applying those mindsets and toolsets to a collective research product delivered to the RBD community. Students who take D3+SUS are encouraged to continue on to CEE 224Y and CEE 224Z, in which teams will be paired with local partners and will develop interventions to improve the resilience of local communities. For more information, visit http://sus.stanford.edu/courses.
Terms: Aut | Units: 3-5

GEOPHYS 218Y: Sustainable Urban Systems Project (CEE 124Y, CEE 224Y, GEOPHYS 118Y)

Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Terms: Win | Units: 1-5

GEOPHYS 218Z: Sustainable Urban Systems Project (CEE 124Z, CEE 224Z, GEOPHYS 118Z)

Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Terms: Win, Spr | Units: 1-5

GEOPHYS 220: Ice, Water, Fire (GEOPHYS 120)

Introductory application of continuum mechanics to ice sheets and glaciers, water waves and tsunamis, and volcanoes. Emphasis on physical processes and mathematical description using balance of mass and momentum, combined with constitutive equations for fluids and solids. Designed for undergraduates with no prior geophysics background; also appropriate for beginning graduate students. Prerequisites: CME 100 or MATH 52 and PHYSICS 41 (or equivalent).
Last offered: Winter 2017 | Units: 3-5

GEOPHYS 222: Reflection Seismology (GEOPHYS 182)

The principles of seismic reflection profiling, focusing on methods of seismic data acquisition and seismic data processing for hydrocarbon exploration.
Terms: Aut | Units: 3

GEOPHYS 223: Reflection Seismology Interpretation (GEOPHYS 183, GS 223)

The structural and stratigraphic interpretation of seismic reflection data, emphasizing hydrocarbon traps in two and three dimensions on industry data, including workstation-based interpretation. Lectures only, 1 unit. Prerequisite: 222, or consent of instructor. (Geophys 183 must be taken for a minimum of 3 units to be eligible for Ways credit).
Terms: Spr | Units: 1-4

GEOPHYS 224: Seismic Reflection Processing

Workshop in computer processing of 2D and 3D seismic reflection data. Students individually process a seismic reflection profile (of their own choice or instructor-provided) from field recordings to migrated sections and subsurface images, using interactive software (OpenCPS from OpenGeophysical.com). Prerequisite: GEOPHYS 222 or consent of instructor.
Terms: Win | Units: 2-3

GEOPHYS 225: Multiphase Instabilities and Extreme Events

How fast can ice sheets disintegrate? Why do volcanoes erupt? Which processes govern thenoccurrence of landslides? And can we reduce the destructive reach of tsunamis and storm surges?nThe common denominator of what at first glance might seem like disparate systems isnmultiphase flow. The dynamic interactions between multiple solid and fluid phases, such as icenand melt-water; lava and gas; vegetation and waves, give rise to drastic nonlinearities that governnabrupt change. This class explores the role of multiphase instabilities in the onset and evolutionnof extreme events. We will explore the different types of instabilities that arise in differentnmultiphase aggregates and why they might be critical for understanding the nonlinear behaviornof natural systems.
Terms: Spr | Units: 4

GEOPHYS 229: Earthquake Rupture Dynamics

Physics of earthquakes, including nucleation, propagation, and arrest; slip-weakening and rate-and-state friction laws; thermal pressurization and dynamic weakening mechanisms; off-fault plasticity; dynamic fracture mechanics; earthquake energy balance. Problem sets involve numerical simulations on CEES cluster. Prerequisites: GEOPHYS 287. Offered occasionally.
Last offered: Autumn 2014 | Units: 3

GEOPHYS 230: Ice Penetrating Radar (GEOPHYS 165)

The purpose of this course is to provide an introduction to the physics, systems, processing, and analysis of ice penetrating radar, preparing students to use it as a quantitative research tool. Target students are graduates or advanced undergraduates in geophysics, glaciology, planetary science, or engineering with an interest in the use of radar to study glaciers, ice sheets, or icy planets.nPrerequisite: EE 142 or EE 242 or PHYS 43 or instructor consent.
Terms: Spr | Units: 1-3

GEOPHYS 235: Waves and Fields in Geophysics

Basic topics and approaches (theory and numerical simulations) on acoustic, electromagnetic, and elastic waves and fields for geophysical applications: dispersion, phase and group velocities, attenuation, reflection and transmission at planar interfaces, high frequency and low frequency approximations, heterogeneous media. Prerequisites: UG level class on waves or consent of instructor.
Terms: Win | Units: 3
Instructors: ; Harris, J. (PI); Li, D. (TA)

GEOPHYS 241A: Seismic Reservoir Characterization (ENERGY 141, ENERGY 241)

(Same as GP241) Practical methods for quantitative characterization and uncertainty assessment of subsurface reservoir models integrating well-log and seismic data. Multidisciplinary combination of rock-physics, seismic attributes, sedimentological information and spatial statistical modeling techniques. Student teams build reservoir models using limited well data and seismic attributes typically available in practice, comparing alternative approaches. Software provided (SGEMS, Petrel, Matlab). Offered every other year.nRecommended: ERE240/260, or GP222/223, or GP260/262 or GES253/257; ERE246, GP112
Terms: Spr | Units: 3-4

GEOPHYS 255: Report on Energy Industry Training

On-the-job-training for master's and doctoral degree students under the guidance of on-site supervisors. Students submit a report detailing work activities, problems, assignment, and key results. May be repeated for credit. Prerequisite: written consent of adviser.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

GEOPHYS 257: Introduction to Computational Earth Sciences

Techniques for mapping numerically intensive algorithms to modern high performance computers such as the Center for Computational Earth and Environmental Science's (CEES) . Topics include computer architecture performance analysis, and parallel programming. Topics covered include pthreads OpenMP; MPI, Cilk++, and CUDA.. Exercises using SMP and cluster computers. May be repeated for credit. Offered every other year, winter quarter.
Last offered: Winter 2017 | Units: 2-4 | Repeatable for credit

GEOPHYS 259: Laboratory Methods in Geophysics (GEOPHYS 162)

Lab. Types of equipment used in experimental rock physics. Principles and measurements of geophysical properties such as porosity, permeability, acoustic wave velocity, and resistivity through lectures and laboratory experiments. Training in analytical project writing skills and understanding errors for assessing accuracy and variability of measured data. Students may investigate a scientific problem to support their own research. Prerequisites: Physics 45 (Light and Heat); and CME 100 (Vector Calculus).
Terms: Aut | Units: 3-4

GEOPHYS 261: Advanced Rock Physics Topics

This course will present advanced topics in elastic effective medium theory, as applied to porous rocks.
Last offered: Summer 2017 | Units: 1-3

GEOPHYS 262: Rock Physics

Properties of and processes in rocks as related to geophysical exploration, crustal studies, and tectonic processes. Emphasis is on wave velocities and attenuation, hydraulic permeability, and electrical resistivity in rocks. Application to in situ problems, using lab data and theoretical results.
Terms: Aut | Units: 3

GEOPHYS 265: Imaging Radar and Applications (EE 355)

Radar remote sensing, radar image characteristics, viewing geometry, range coding, synthetic aperture processing, correlation, range migration, range/Doppler algorithms, wave domain algorithms, polar algorithm, polarimetric processing, interferometric measurements. Applications: surfafe deformation, polarimetry and target discrimination, topographic mapping surface displacements, velocities of ice fields. Prerequisites: EE261. Recommended: EE254, EE278, EE279.
Terms: Win | Units: 3

GEOPHYS 270: Electromagnetic Properties of Geological Materials

Laboratory observations and theoretical modeling of the electromagnetic properties and nuclear magnetic resonance response of geological material. Relationships between these properties and water-saturated materials properties such as composition, water content, surface area, and permeability.
Last offered: Spring 2016 | Units: 2-3

GEOPHYS 274: Journey to the Center of the Earth (GEOPHYS 184, GS 107, GS 207)

The interconnected set of dynamic systems that make up the Earth. Focus is on fundamental geophysical observations of the Earth and the laboratory experiments to understand and interpret them. What earthquakes, volcanoes, gravity, magnetic fields, and rocks reveal about the Earth's formation and evolution.
Last offered: Winter 2014 | Units: 3

GEOPHYS 280: 3-D Seismic Imaging

The principles of imaging complex structures in the Earth subsurface using 3-D reflection seismology. Emphasis is on processing methodologies and algorithms, with examples of applications to field data. Topics: acquisition geometrics of land and marine 3-D seismic surveys, time vs. depth imaging, migration by Kirchhoff methods and by wave-equation methods, migration velocity analysis, velocity model building, imaging irregularly sampled and aliased data. Computational labs involve some programming. Lab for 3 units. Offered every year, Spring quarter.
Terms: Spr | Units: 2-3

GEOPHYS 281: Geophysical Inverse Problems

Concepts of inverse theory, with application to geophysics. Inverses with discrete and continuous models, generalized matrix inverses, resolving kernels, regularization, use of prior information, singular value decomposition, nonlinear inverse problems, back-projection techniques, and linear programming. Application to seismic tomography, earthquake location, migration, and fault-slip estimation. Prerequisite: MATH 51
Last offered: Autumn 2014 | Units: 3

GEOPHYS 287: Earthquake Seismology

Seismic wave propagation (body waves and surface waves, reflection/transmission), Green's functions, seismic moment tensors and equivalent forces, representation theorem, finite-source effects. Prerequisites: GEOPHYS 130 or equivalent. Offered every other year.
Last offered: Winter 2017 | Units: 3-5

GEOPHYS 288A: Crustal Deformation

Earthquake and volcanic deformation, emphasizing analytical models that can be compared to data from GPS, InSAR, and strain meters. Deformation, stress, and conservation laws. Dislocation models of strike slip and dip slip faults, in 2 and 3 dimensions. Crack models, including boundary element methods. Dislocations in layered and elastically heterogeneous earth models. Models of volcano deformation, including sills, dikes, and magma chambers. Offered every other year, autumn quarter.
Terms: Aut | Units: 3-5
Instructors: ; Segall, P. (PI); Wong, Y. (TA)

GEOPHYS 288B: Crustal Deformation

Earthquake and volcanic deformation, emphasizing analytical models that can be compared to data from GPS, InSAR, and strain meters. Viscoelasticity, post-seismic rebound, and viscoelastic magma chambers. Effects of surface topography and earth curvature on surface deformation. Gravity changes induced by deformation and elastogravitational coupling. Poro-elasticity, coupled fluid flow and deformation. Earthquake nucleation and rate-state friction. Models of earthquake cycle at plate boundaries.
Terms: Win | Units: 3-5

GEOPHYS 299: Teaching Experience in Geophysics

For TAs in Geophysics. Course and lecture design and preparation; lecturing practice in small groups. Classroom teaching practice in a Geophysics course for which the participant is the TA.
Terms: Win, Spr | Units: 1 | Repeatable 4 times (up to 4 units total)

GEOPHYS 306: Topics in Multiphase Instabilities and Extreme Events

This Seminar will explore the role of multiphase instabilities in the onset and evolution of extreme events. We will explore the different types of instabilities that arise in different multiphase aggregates and why they might be critical for understanding the nonlinear behavior of natural systems.
Terms: Spr | Units: 1 | Repeatable for credit (up to 1 units total)

GEOPHYS 308: Topics in Disaster Resilience Research (CEE 308)

This seminar will explore past and current research on disaster risk and resilience, towards the development of new frontiers in resilience engineering science research. Designed for graduate students engaged in the topic of risk and resilience research, the seminar will be organized around weekly readings and discussion groups. May be repeat for credit
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit
Instructors: ; Baker, J. (PI); Soden, R. (PI)

GEOPHYS 385A: Reflection Seismology

Research in reflection seismology and petroleum prospecting. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit

GEOPHYS 385B: Environmental Geophysics

Research on the use of geophysical methods for near-surface environmental problems. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit
Instructors: ; Knight, R. (PI)

GEOPHYS 385D: Theoretical Geophysics

Research on physics and mechanics of earthquakes, volcanoes, ice sheets, and nglaciers. Emphasis is on developing theoretical understanding of processes governing natural phenomena.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit
Instructors: ; Dunham, E. (PI)

GEOPHYS 385E: Tectonics

Research on the origin, major structures, and tectonic processes of the Earth's crust. Emphasis is on use of deep seismic reflection and refraction data. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit

GEOPHYS 385G: Radio Glaciology

Research on the acquisition, processing, and analysis of radio geophysical signals in observing the subsurface conditions and physical processes of ice sheets, glaciers, and icy moons.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit
Instructors: ; Schroeder, D. (PI)

GEOPHYS 385K: Crustal Mechanics

Research in areas of petrophysics, seismology, in situ stress, and subjects related to characterization of the physical properties of rock in situ. May be repeated for credit.
Terms: Aut | Units: 1-2 | Repeatable for credit

GEOPHYS 385L: Earthquake Seismology, Deformation, and Stress

Research on seismic source processes, crustal stress, and deformation associated with faulting and volcanism. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit

GEOPHYS 385N: Experimental Rock Physics

Research on the use of laboratory geophysical methods for the characterization of the physical properties of rocks and their response to earth stresses, temperature, and rock-fluid interactions. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit
Instructors: ; Vanorio, T. (PI)

GEOPHYS 385R: Physical Volcanology

Research on volcanic processes.
Terms: Aut, Win, Spr, Sum | Units: 1

GEOPHYS 385S: Wave Physics

Theory, numerical simulation, and experiments on seismic and electromagnetic waves in complex porous media. Applications from Earth imaging and in situ characterization of Earth properties, including subsurface monitoring. Presentations by faculty, research staff, students, and visitors. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit
Instructors: ; Harris, J. (PI)

GEOPHYS 385V: Poroelasticity

Research on the mechanical properties of porous rocks: dynamic problems of seismic velocity, dispersion, and attentuation; and quasi-static problems of faulting, fluid transport, crustal deformation, and loss of porosity. Participants define, investigate, and present an original problem of their own. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit
Instructors: ; Mavko, G. (PI)

GEOPHYS 385W: GEOPHYSICAL MULTI-PHASE FLOWS

Research on the dynamics of multi-phase systems that are fundamental to many geophysical problems such as ice sheets and volcanoes.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit
Instructors: ; Suckale, J. (PI)

GEOPHYS 385Z: Radio Remote Sensing

Research applications, especially crustal deformation measurements. Recent instrumentation and system advancements. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit
© Stanford University | Terms of Use | Copyright Complaints