2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 1 of 1 results for: STATS 315A: Modern Applied Statistics: Learning

STATS 315A: Modern Applied Statistics: Learning

Overview of supervised learning. Linear regression and related methods. Model selection, least angle regression and the lasso, stepwise methods. Classification. Linear discriminant analysis, logistic regression, and support vector machines (SVMs). Basis expansions, splines and regularization. Kernel methods. Generalized additive models. Kernel smoothing. Gaussian mixtures and the EM algorithm. Model assessment and selection: crossvalidation and the bootstrap. Pathwise coordinate descent. Sparse graphical models. Prerequisites: STATS 305, 306A,B or consent of instructor.
Terms: Win | Units: 2-3 | Grading: Letter or Credit/No Credit
Instructors: Hastie, T. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints