2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 2 of 2 results for: CS 246: Mining Massive Data Sets

CS 246: Mining Massive Data Sets

The course will discuss data mining and machine learning algorithms for analyzing very large amounts of data. The emphasis will be on Map Reduce as a tool for creating parallel algorithms that can process very large amounts of data. Topics include: Frequent itemsets and Association rules, Near Neighbor Search in High Dimensional Data, Locality Sensitive Hashing (LSH), Dimensionality reduction, Recommender Systems, Clustering, Link Analysis, Large-scale machine learning, Data streams, Analysis of Social-network Graphs, and Web Advertising. Prerequisites: At lease one of CS107 or CS145; At least one of CS109 or STAT116, or equivalent.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Leskovec, J. (PI)

CS 246H: Mining Massive Data Sets Hadoop Lab

Supplement to CS 246 providing additional material on Hadoop. Students will learn how to implement data mining algorithms using Hadoop, how to implement and debug complex MapReduce jobs in Hadoop, and how to use some of the tools in the Hadoop ecosystem for data mining and machine learning. Topics: Hadoop, MapReduce, HDFS, combiners, secondary sort, distributed cache, SQL on Hadoop, Hive, Cloudera ML/Oryx, Mahout, Hadoop streaming, implementing Hadoop jobs, debugging Hadoop jobs, TF-IDF, Pig, Sqoop, Oozie, HBase, Impala. Prerequisite: CS 107 or equivalent.
Terms: Win | Units: 1 | Grading: Satisfactory/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints