2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 8 of 8 results for: ENGR40

EE 101A: Circuits I

Introduction to circuit modeling and analysis. Topics include creating the models of typical components in electronic circuits and simplifying non-linear models for restricted ranges of operation (small signal model); and using network theory to solve linear and non-linear circuits under static and dynamic operations. Prerequisite: ENGR40 or ENGR40M is useful but not strictly required.
Terms: Win, Sum | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

EE 155: Green Electronics (EE 255)

Many green technologies including hybrid cars, photovoltaic energy systems, efficient power supplies, and energy-conserving control systems have at their heart intelligent, high-power electronics. This course examines this technology and uses green-tech examples to teach the engineering principles of modeling, optimization, analysis, simulation, and design. Topics include power converter topologies, periodic steady-state analysis, control, motors and drives, photovol-taic systems, and design of magnetic components. The course involves a hands-on laboratory and a substantial final project. Formerly EE 152. Required: EE101B, EE102A, EE108. Recommended: ENGR40 or EE122A.
Terms: Aut | Units: 4 | Grading: Letter or Credit/No Credit

EE 255: Green Electronics (EE 155)

Many green technologies including hybrid cars, photovoltaic energy systems, efficient power supplies, and energy-conserving control systems have at their heart intelligent, high-power electronics. This course examines this technology and uses green-tech examples to teach the engineering principles of modeling, optimization, analysis, simulation, and design. Topics include power converter topologies, periodic steady-state analysis, control, motors and drives, photovol-taic systems, and design of magnetic components. The course involves a hands-on laboratory and a substantial final project. Formerly EE 152. Required: EE101B, EE102A, EE108. Recommended: ENGR40 or EE122A.
Terms: Aut | Units: 4 | Grading: Letter or Credit/No Credit

ENGR 40: Introductory Electronics

Not offered. Students wishing to complete the equivalent of ENGR 40 should enroll in both ENGR 40A and ENGR 40B.
Terms: not given this year, last offered Winter 2016 | Units: 5 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)

ENGR 40A: Introductory Electronics

First portion of the former ENGR 40, for students not pursuing degree in Electrical Engineering. Instruction to be completed in the first seven weeks of the quarter. Students wishing to complete the equivalent of ENGR 40 should enroll in both ENGR 40A and ENGR 40B. Overview of electronic circuits and applications. Electrical quantities and their measurement, including operation of the oscilloscope. Basic models of electronic components including resistors, capacitors, inductors, and the operational amplifier. Lab. Lab assignments. Enrollment limited to 300.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)

ENGR 40B: Introductory Electronics Part II

Second portion of the former ENGR 40. Instruction to be completed in the final three weeks of the quarter. Students wishing to complete the equivalent of ENGR 40 should enroll in both ENGR 40A and ENGR 40B. Students cannot enroll in ENGR 40B without enrolling in ENGR 40A. Students choose one the following sections (1) Frequency response of linear circuits, including basic filters, using phasor analysis. (2) Digital hardware and software implementations of a robot car. Lab. Lab assignments. Co-requisite: ENGR 40A. Enrollment limited to 300.
Terms: Win | Units: 2 | Grading: Letter (ABCD/NP)

ENGR 40M: An Intro to Making: What is EE

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.
Terms: Aut, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

ME 220: Introduction to Sensors

Sensors are widely used in scientific research and as an integral part of commercial products and automated systems. The basic principles for sensing displacement, force, pressure, acceleration, temperature, optical radiation, nuclear radiation, and other physical parameters. Performance, cost, and operating requirements of available sensors. Elementary electronic circuits which are typically used with sensors. Lecture demonstration of a representative sensor from each category elucidates operating principles and typical performance. Lab experiments with off-the-shelf devices. Recommended Pre-requisites or equivalent knowledge: Physics 43 electromagnetism, Physics 41 mechanics, Math 53 Taylor series approximation, 2nd order Ordinary Diff Eqns, ENGR40A/Engr40 or ME210, i.e. some exposure to building basic circuits
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints