2012-2013 2013-2014 2014-2015 2015-2016 2016-2017
Browse
by subject...
    Schedule
view...
 

1 - 3 of 3 results for: EE103

CME 103: Introduction to Matrix Methods (EE 103)

Introduction to applied linear algebra with emphasis on applications. Vectors, norm, and angle; linear independence and orthonormal sets; applications to document analysis. Clustering and the k-means algorithm. Matrices, left and right inverses, QR factorization. Least-squares and model fitting, regularization and cross-validation. Constrained and nonlinear least-squares. Applications include time-series prediction, tomography, optimal control, and portfolio optimization. Prerequisites: MATH 51 or CME 100, and basic knowledge of computing ( CS 106A is more than enough, and can be taken concurrently). EE103/CME103 and Math 104 cover complementary topics in applied linear algebra. The focus of EE103 is on a few linear algebra concepts, and many applications; the focus of Math 104 is on algorithms and concepts.
Terms: Aut | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit

EE 103: Introduction to Matrix Methods (CME 103)

Introduction to applied linear algebra with emphasis on applications. Vectors, norm, and angle; linear independence and orthonormal sets; applications to document analysis. Clustering and the k-means algorithm. Matrices, left and right inverses, QR factorization. Least-squares and model fitting, regularization and cross-validation. Constrained and nonlinear least-squares. Applications include time-series prediction, tomography, optimal control, and portfolio optimization. Prerequisites: MATH 51 or CME 100, and basic knowledge of computing ( CS 106A is more than enough, and can be taken concurrently). EE103/CME103 and Math 104 cover complementary topics in applied linear algebra. The focus of EE103 is on a few linear algebra concepts, and many applications; the focus of Math 104 is on algorithms and concepts.
Terms: Aut | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit

MATH 104: Applied Matrix Theory

Linear algebra for applications in science and engineering: orthogonality, projections, spectral theory for symmetric matrices, the singular value decomposition, the QR decomposition, least-squares, the condition number of a matrix, algorithms for solving linear systems. ( Math 113 offers a more theoretical treatment of linear algebra.) Prerequisites: Math 51 and programming experience on par with CS106nnMath 104 and EE103/CME103 cover complementary topics in applied linear algebra. The focus of Math 104 is on algorithms and concepts; the focus of EE103 is on a few linear algebra concepts, and many applications.
Terms: Aut, Win | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints