2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

1 - 3 of 3 results for: CEE207

CEE 207A: Understanding Energy (CEE 107A, EARTHSYS 103)

Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. In taking this course, students will not only understand the fundamentals of each energy resource -- including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts -- students will also be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The more »
Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. In taking this course, students will not only understand the fundamentals of each energy resource -- including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts -- students will also be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 4 units, which includes lecture and in-class discussion, readings and videos, assignments, and two off-site field trips. Field trip offerings differ each fall (see syllabus for updated list), but may include Diablo Canyon nuclear power plant, Shasta dam, Tesla Gigafactory, NextEra wind farm, San Ardo oil field, Geyser¿s geothermal power plants, etc. Students choose two field trips from approximately 8 that are offered. Enroll for 5 units to also attend the Workshop, an interactive discussion section on cross-cutting topics that meets once per week for 80 minutes (timing TBD). The 3-unit option requires instructor approval - please contact Diana Ginnebaugh. Open to all: pre-majors and majors, with any background! The course was formerly called Energy Resources. Website: http://web.stanford.edu/class/cee207a/ nFor a course that covers all of this but goes less in-depth into the technical aspects of each energy resource, check out CEE 107S/207S Understanding Energy: Essentials, offered spring and summer (cannot take both for credit). Prerequisites: Algebra. May not be taken for credit by students who have completed CEE 107S/207S or CEE 107E.
Terms: Aut | Units: 3-5 | Grading: Letter or Credit/No Credit

CEE 207R: E^3: Extreme Energy Efficiency (CEE 107R)

Be part of a unique and intense six day course about extreme energy efficiency taking place during Spring Break at Rocky Mountain Institute's Innovation Center in Basalt, Colorado! Students will also meet several times during the quarter prior to the spring break portion of the course. E^3 will focus on efficiency techniques' design, performance, choice, evolution, integration, barrier-busting, profitable business-led implementation, and implications for energy supply, competitive success, environment, development, security, etc. Examples will span very diverse sectors, applications, issues, and disciplines, with each day covering a different energy theme: buildings, transportation, industry, and implementation and implications, including renewable energy synergy and integration. Solid technical grounding and acquaintance with basic economics and business concepts will both be helpful. Rocky Mountain Institute (RMI) will design a series of lectures, exercises, and interactive activitie more »
Be part of a unique and intense six day course about extreme energy efficiency taking place during Spring Break at Rocky Mountain Institute's Innovation Center in Basalt, Colorado! Students will also meet several times during the quarter prior to the spring break portion of the course. E^3 will focus on efficiency techniques' design, performance, choice, evolution, integration, barrier-busting, profitable business-led implementation, and implications for energy supply, competitive success, environment, development, security, etc. Examples will span very diverse sectors, applications, issues, and disciplines, with each day covering a different energy theme: buildings, transportation, industry, and implementation and implications, including renewable energy synergy and integration. Solid technical grounding and acquaintance with basic economics and business concepts will both be helpful. Rocky Mountain Institute (RMI) will design a series of lectures, exercises, and interactive activities synthesizing integrative design principles. Students will be introduced to Factor 10 Engineering, the approach for optimizing the whole system for multiple benefits. Students will work closely and interactively with RMI staff including Amory Lovins, cofounder and Chief Scientist of Rocky Mountain Institute (RMI). Exercises will illuminate challenges RMI has faced and solutions it has created in real-world design. Students will explore clean-sheet solutions that meet end-use demands and optimize whole-system resource efficiency, often with expanding rather than diminishing returns to investments, i.e. making big savings cheaper than small ones. Students will meet as a class once during winter quarter to discuss preparation and spring break logistics. Students must pay for their own travel to and from Basalt, CO (~$400). Lodging and food will be provided during the course. Students must apply - instructor approval required. All backgrounds and disciplines, both undergraduate and graduate, are welcome to apply. Prerequisite - completion of one of the following courses or their equivalent is required: CEE 107A/207A/ Earthsys 103, CEE 107S/ CEE 207S, CEE 176A, CEE 176B. Contact Diana Ginnebaugh at moongdes@stanford.edu for an application. Course details are available at the website: https://web.stanford.edu/class/cee207r/
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

CEE 207S: Understanding Energy - Essentials (CEE 107S)

Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. Students will learn the fundamentals of each energy resource -- including significance and potential, drivers and barriers, policy and regulation, and social, economic, and environmental impacts ¿ and will be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 3 units, which includes lecture, readings and videos, assignments, and one o more »
Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. Students will learn the fundamentals of each energy resource -- including significance and potential, drivers and barriers, policy and regulation, and social, economic, and environmental impacts ¿ and will be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 3 units, which includes lecture, readings and videos, assignments, and one off-site field trips. Field trip offerings differ each quarter (see syllabus for updated list), but for the spring quarter may include Diablo Canyon nuclear power plant, Shasta dam, Tesla Gigafactory, NextEra wind farm, San Ardo oil field, Geyser¿s geothermal power plants, etc. Students choose one field trip from approximately 8 that are offered. For the summer quarter, one off-campus field trip will be offered and required. Enroll for 4 units to also attend the Workshop, an interactive discussion section on cross-cutting topics that meets once per week for 80 minutes (timing TBD). This is a course for all: pre-majors and majors, with any background ¿ no prior energy knowledge necessary. For a course that covers all of this plus goes more in-depth into the technical aspects of each energy resource, check out CEE 107A/207A/ EarthSys 103 Understanding Energy offered in the autumn quarter (cannot take both for credit). This course was formerly called Energy Resources. Website: http://web.stanford.edu/class/cee207a/ nPrerequisites: Algebra. May not be taken for credit by students who have completed CEE 107A/207A/ EarthSys 103
Terms: Spr, Sum | Units: 3-4 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints