2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 11 results for: MED 235

ANES 235: Wilderness Leadership and Mentorship Skills for Medical and PA Students

For MD and MSPA pre-orientation camping trip aides. Training to engage with and prepare incoming first-year medical students and MSPA students for the rigors of their respective programs. Topics include mentorship, team building, problem-solving, risk management, cultural competency, professional identity, reflection, and resiliency, first-year curricula, stress management and coping. Guest lectures from Stanford faculty and advisors, and mental health personnel. Instruction taught in-person August 16-17 with aides participating on the SWEAT orientation and trip August 18-22. Contact Margaret Govea (govea@stanford.edu) if you have questions.
Terms: Aut, Sum | Units: 1 | Repeatable 12 times (up to 24 units total)
Instructors: Honkanen, A. (PI)

BIODS 235: Best practices for developing data science software for clinical and healthcare applications

Best practices for developing data science software for clinical and healthcare applications is a new seminar aimed to provide an overview of the strategies, processes, and regulatory hurdles to develop software implementing new algorithms or analytical approaches to be used in clinical diagnosis or medical practice. Upon completing this seminar, biomedical scientists implementing diagnostics, analytical, or AI-driven clinical decision support software should better understand how to protect, transfer, commercialize, and translate their inventions into the clinic. Topics include: Intellectual property strategies and technology licensing challenges; software development and quality best practices for the clinic; regulatory frameworks for clinical decision support and diagnostics informatics applications. It is open primarily to graduate students across Stanford and combines short lectures, guest industry speakers, and workshop sessions to allow participants to receive feedback on curren more »
Best practices for developing data science software for clinical and healthcare applications is a new seminar aimed to provide an overview of the strategies, processes, and regulatory hurdles to develop software implementing new algorithms or analytical approaches to be used in clinical diagnosis or medical practice. Upon completing this seminar, biomedical scientists implementing diagnostics, analytical, or AI-driven clinical decision support software should better understand how to protect, transfer, commercialize, and translate their inventions into the clinic. Topics include: Intellectual property strategies and technology licensing challenges; software development and quality best practices for the clinic; regulatory frameworks for clinical decision support and diagnostics informatics applications. It is open primarily to graduate students across Stanford and combines short lectures, guest industry speakers, and workshop sessions to allow participants to receive feedback on current related projects that are undertaking. Enrollment limited to 25 to allow participants present their current projects. Prerequisites: Basic experience in programing and algorithm or software tool development. Ideally, the participant is actively implementing a new method/process/application in software aimed to be used in the clinic.
Terms: Win | Units: 1

BIOPHYS 235: Biotransport Phenomena (APPPHYS 235, BIOE 235, ME 235)

The efficient transport of energy, mass, and momentum is essential to the normal function of living systems. Changes in these processes often result in pathological conditions. Transport phenomena are also critical to the design of instrumentation for medical applications and biotechnology. The course aims to introduce the integrated study of transport processes and their biological applications. It covers the fundamental driving forces for transport in biological systems and the biophysics across multiple length scales (molecules, cells, tissues, organs, whole organisms). Topics include chemical gradients, electrical interactions, fluid flow, mass transport. Pre-requisites: Calculus, MATLAB, basic fluid mechanics, heat transfer, solid mechanics.
Last offered: Winter 2023

BIOS 235: Foundations of Computer Science: What the Tutorial Didn't Tell You

The course provides non-computer-science students with a comprehensive understanding of computer science and software engineering principles for efficient code in modern scientific computing. Students gain theoretical knowledge and practical skills to advance programming proficiency and develop robust software systems. Upon completion, students have foundational knowledge in computer science, capable of writing better code for scientific computing. They gain expertise in selecting tools, designing modular software systems, and following best coding practices. They understand the importance of testing and version control in software development, ready to tackle advanced programming challenges in scientific applications. Prerequisites: Familiarity with a high-level programming language. More info and sign up at: https://forms.gle/qJSL1PBdokaUTLV6A
Terms: Aut | Units: 2

BMP 235: Advanced Ultrasound Imaging (RAD 235)

The focus of this course is on advanced ultrasound imaging techniques for medical imaging applications. Topics include beamforming, adaptive beamforming, Fourier beamforming, synthetic aperture techniques, speckle, speckle reduction, k-space, harmonic imaging, coherence imaging, phase aberration, radiation force imaging, elastography, quantitative ultrasound, Doppler and flow imaging, ultrasounds modeling and advanced ultrasound theory.
Terms: Win | Units: 3

EPI 235: Designing Research-Based Interventions to Solve Global Health Problems (AFRICAST 135, AFRICAST 235, EDUC 135, EDUC 335, HUMBIO 26, MED 235)

The excitement around social innovation and entrepreneurship has spawned numerous startups focused on tackling world problems, particularly in the fields of education and health. The best social ventures are launched with careful consideration paid to research, design, and efficacy. This course offers students an immersive educational experience into understanding how to effectively develop, evaluate, and scale social ventures. Students will also get a rare "behind-the-scenes" glimpse at the complex ethical dilemmas social entrepreneurs have tackled to navigate the odds. Partnered with TeachAids, a global award-winning nonprofit (scaled to 82 countries), this course introduces students to the major principles of research-based design and integrates instruction supported by several game-changing social leaders. Open to both undergraduate and graduate students, it culminates in a formal presentation to an interdisciplinary panel of diverse Silicon Valley leaders. (Cardinal Course certified by the Haas Center)
Terms: Win | Units: 3

GENE 235: C. Elegans Genetics

Genetic approaches to C. elegans, practice in designing experiments and demonstrations of its growth and anatomy. Probable topics include: growth and genetics, genome map and sequence, mutant screens that start with a desired phenotype, reverse genetics and RNAi screens, genetic duplications, uses of null phenotype non-null alleles, genetic interactions and pathway analysis, and embryogenesis and cell lineage. Focus of action, mosaic analysis, and interface with embryological and evolutionary approaches.
Last offered: Spring 2022

MED 235: Designing Research-Based Interventions to Solve Global Health Problems (AFRICAST 135, AFRICAST 235, EDUC 135, EDUC 335, EPI 235, HUMBIO 26)

The excitement around social innovation and entrepreneurship has spawned numerous startups focused on tackling world problems, particularly in the fields of education and health. The best social ventures are launched with careful consideration paid to research, design, and efficacy. This course offers students an immersive educational experience into understanding how to effectively develop, evaluate, and scale social ventures. Students will also get a rare "behind-the-scenes" glimpse at the complex ethical dilemmas social entrepreneurs have tackled to navigate the odds. Partnered with TeachAids, a global award-winning nonprofit (scaled to 82 countries), this course introduces students to the major principles of research-based design and integrates instruction supported by several game-changing social leaders. Open to both undergraduate and graduate students, it culminates in a formal presentation to an interdisciplinary panel of diverse Silicon Valley leaders. (Cardinal Course certified by the Haas Center)
Terms: Win | Units: 3

PSYC 135: Dement's Sleep and Dreams (PSYC 235)

Dr. William Dement created Sleep and Dreams in 1971, the world's first university course devoted to the science of sleep. Upon his retirement he selected Dr. Rafael Pelayo to be his successor, but he continued to participate in class until his passing in the summer of 2020. To honor his legacy in perpetuity, Dr.Pelayo renamed the course 'Dement's Sleep Dreams' as he had promised him he would. The goal is to retain the original spirit of the course as the content is continuously updated to reflect current state of sleep science. The course is designed to impart essential knowledge of the neuroscience of sleep and covers how sleep affects our daily lives. The course covers normal sleep and dreams, as well as common sleep disorders. Course content empowers students to make educated decisions concerning sleep and alertness for the rest of their lives and shapes students' attitudes about the importance of sleep. Students will keep track of their sleep patterns during the course. They will also participate in an outreach project to help improve awareness of the importance of sleep heath in our community. Undergraduates must enroll in PSYC 135, while graduate students should enroll in PSYC 235.
Terms: Win, Spr | Units: 3 | UG Reqs: WAY-SMA, GER: DB-NatSci

PSYC 235: Dement's Sleep and Dreams (PSYC 135)

Dr. William Dement created Sleep and Dreams in 1971, the world's first university course devoted to the science of sleep. Upon his retirement he selected Dr. Rafael Pelayo to be his successor, but he continued to participate in class until his passing in the summer of 2020. To honor his legacy in perpetuity, Dr.Pelayo renamed the course 'Dement's Sleep Dreams' as he had promised him he would. The goal is to retain the original spirit of the course as the content is continuously updated to reflect current state of sleep science. The course is designed to impart essential knowledge of the neuroscience of sleep and covers how sleep affects our daily lives. The course covers normal sleep and dreams, as well as common sleep disorders. Course content empowers students to make educated decisions concerning sleep and alertness for the rest of their lives and shapes students' attitudes about the importance of sleep. Students will keep track of their sleep patterns during the course. They will also participate in an outreach project to help improve awareness of the importance of sleep heath in our community. Undergraduates must enroll in PSYC 135, while graduate students should enroll in PSYC 235.
Terms: Win, Spr | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints