2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 10 of 61 results for: APPLIED PHYSICS

AA 100: Introduction to Aeronautics and Astronautics

This class introduces the basics of aeronautics and astronautics through applied physics, hands-on activities, and real world examples. The principles of fluid flow, flight, and propulsion for aircraft will be illustrated, including the creation of lift and drag, aerodynamic performance including takeoff, climb, range, and landing. The principles of orbits, maneuvers, space environment, and propulsion for spacecraft will be illustrated. Students will be exposed to the history and challenges of aeronautics and astronautics.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

APPPHYS 10AX: The Expressive Vessel: An Immersive Introduction to Clay

Students learn to make and to analyze functional ceramic forms with a focus on wheel-thrown pottery. Studio time dedicated to the acquisition and refinement of shaping, marking/glazing and finishing skills; supplementary lectures and discussions to explore contemporary studio ceramics and major historical traditions. No prior experience necessary; instructors will tailor assignments for students at all levels of ability.
Terms: Sum | Units: 2 | UG Reqs: WAY-CE | Grading: Satisfactory/No Credit
Instructors: Fuzzell, D. (PI)

APPPHYS 61: Science as a Creative Process (BIO 61)

What is the process of science, and why does creativity matter? We'll delve deeply into the applicability of science in addressing a vast range of real-world problems. This course is designed to teach the scientific method as it's actually practiced by working scientists. It will cover how to ask a well-posed question, how to design a good experiment, how to collect and interpret quantitative data, how to recover from error, and how to communicate findings. Facts matter! Course topics will include experimental design, statistics and statistical significance, formulating appropriate controls, modeling, peer review, and more. The course will incorporate a significant hands-on component featuring device fabrication, testing, and measurement. Among other "Dorm Science" activities, we'll be distributing Arduino microcontroller kits and electronic sensors, then use these items, along with other materials, to complete a variety of group and individual projects outside the classroom. The final course assignment will be to develop and write a scientific grant proposal to test a student-selected myth or scientific controversy. Although helpful, no prior experience with electronics or computer programming is required. Recommended for freshmen.
Terms: Aut | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)

APPPHYS 77N: Functional Materials and Devices

Preference to freshmen. Exploration via case studies how functional materials have been developed and incorporated into modern devices. Particular emphasis is on magnetic and dielectric materials and devices. Recommended: high school physics course including electricity and magnetism.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Suzuki, Y. (PI)

APPPHYS 79Q: Energy Options for the 21st Century

Preference to sophomores.. Choices for meeting the future energy needs of the U.S. and the world. Basic physics of energy sources, technologies that might be employed, and related public policy issues. Trade-offs and societal impacts of different energy sources. Policy options for making rational choices for a sustainable world energy economy.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Fox, J. (PI)

APPPHYS 100: The Questions of Clay: Craft, Creativity and Scientific Process

Students will create individual studio portfolios of ceramic work and pursue technical investigations of clay properties and the firing process using modern scientific equipment. Emphasis on development of creative process; parallels between science and traditional craft; integration of creative expression with scientific method and analysis. Prior ceramics experience desirable but not necessary. Limited enrollment. Prerequisites: any level of background in physics, Instructor permission.
Terms: Win, alternate years, not given next year | Units: 5 | UG Reqs: WAY-CE, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Mabuchi, H. (PI)

APPPHYS 201: Electrons and Photons (PHOTON 201)

Applied Physics Core course appropriate for graduate students and advanced undergraduate students with prior knowledge of elementary quantum mechanics, electricity and magnetism, and special relativity. Interaction of electrons with intense electromagnetic fields from microwaves to x- ray, including electron accelerators, x-ray lasers and synchrotron light sources, attosecond laser-atom interactions, and x-ray matter interactions. Mechanisms of radiation, free-electron lasing, and advanced techniques for generating ultrashort brilliant pulses. Characterization of electronic properties of advanced materials, prospects for single-molecule structure determination using x-ray lasers, and imaging attosecond molecular dynamics.
Terms: Spr | Units: 4 | Grading: Letter or Credit/No Credit

APPPHYS 203: Atoms, Fields and Photons

Applied Physics Core course appropriate for graduate students and advanced undergraduate students with prior knowledge of elementary quantum mechanics, electricity and magnetism, and ordinary differential equations. Structure of single- and multi-electron atoms and molecules, and cold collisions. Phenomenology and quantitative modeling of atoms in strong fields, with modern applications. Introduction to quantum optical theory of atom-photon interactions, including quantum trajectory theory, mechanical effects of light on atoms, and fundamentals of laser spectroscopy and coherent control.
Terms: Aut | Units: 4 | Grading: Letter or Credit/No Credit

APPPHYS 204: Quantum Materials

Applied Physics Core course appropriate for graduate students and advanced undergraduate students with prior knowledge of elementary quantum mechanics. Introduction to materials and topics of current interest. Topics include superconductivity, magnetism, charge and spin density waves, frustration, classical and quantum phase transitions, multiferroics, and interfaces. Prerequisite: elementary course in quantum mechanics.
Terms: Win | Units: 4 | Grading: Letter or Credit/No Credit

APPPHYS 205: Introduction to Biophysics (BIO 126, BIO 226)

Core course appropriate for advanced undergraduate students and graduate students with prior knowledge of calculus and a college physics course. Introduction to how physical principles offer insights into modern biology, with regard to the structural, dynamical, and functional organization of biological systems. Topics include the roles of free energy, diffusion, electromotive forces, non-equilibrium dynamics, and information in fundamental biological processes.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Ganguli, S. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints