2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 6 of 6 results for: AA 100: Introduction to Aeronautics and Astronautics

AA 100: Introduction to Aeronautics and Astronautics

This class introduces the basics of aeronautics and astronautics through applied physics, hands-on activities, and real world examples. The principles of fluid flow, flight, and propulsion for aircraft will be illustrated, including the creation of lift and drag, aerodynamic performance including takeoff, climb, range, and landing. The principles of orbits, maneuvers, space environment, and propulsion for spacecraft will be illustrated. Students will be exposed to the history and challenges of aeronautics and astronautics.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

AA 102: Introduction to Applied Aerodynamics

This course explores the fundamentals of the behavior of aerodynamic surfaces (airfoils, wings, bodies) immersed in a fluid across all speed regimes (from subsonic to supersonic/hypersonic). We will cover airfoil theory (subsonic and supersonic), wing theory, and introduction to viscous flows and both laminar and turbulent boundary layers, and the topic of flow transition. At the completion of this course, students will be able to understand and predict the forces and movements generated by aerodynamic configurations of interest. Assignments require a basic introductory knowledge of MATLAB or another suitable programming language. Prerequisites: CME 100 and CME 102 (or equivalent), PHYS 41, AA 100, and ME 70.
Last offered: Winter 2022

AA 103: Air and Space Propulsion

This course is designed to introduce the student to fundamental concepts of air-breathing and rocket propulsion including advanced concepts for space propulsion. Topics: the physical mechanisms of thrust creation and the parameters used to characterize propulsion system performance; comparison of airbreathing engine cycles; introduction to chemical rockets; multistage launch systems; plasmas and electric propulsion; solar sails and laser assisted propulsion. Prerequisites: AA 100, ME 30, and ME 70 (or equivalent).
Last offered: Spring 2023

AA 131: Space Flight

This class is all about how to build a spacecraft. It is designed to introduce undergraduate engineering students to the engineering fundamentals of conceiving, designing, implementing, and operating satellites and other space systems. Topics include orbital dynamics, attitude dynamics, mission design, and subsystem technologies. The space environment and the seven classic spacecraft subsystems - propulsion, attitude control and navigation, structure, thermal, power, telemetry and command, and payload - will be explored in detail. Prerequisites: Freshman-level physics, basic calculus and differential equations, AA 100 (Introduction to Aeronautics and Astronautics).
Terms: Aut | Units: 3 | UG Reqs: WAY-AQR

AA 174A: Principles of Robot Autonomy I (CS 137A, EE 160A)

Basic principles for endowing mobile autonomous robots with perception, planning, and decision-making capabilities. Algorithmic approaches for robot perception, localization, and simultaneous localization and mapping; control of non-linear systems, learning-based control, and robot motion planning; introduction to methodologies for reasoning under uncertainty, e.g., (partially observable) Markov decision processes. Extensive use of the Robot Operating System (ROS) for demonstrations and hands-on activities. Prerequisites: CS 106A or equivalent, CME 100 or equivalent (for linear algebra), and CME 106 or equivalent (for probability theory).
Terms: Aut | Units: 3-4

AA 274A: Principles of Robot Autonomy I (CS 237A, EE 260A)

Basic principles for endowing mobile autonomous robots with perception, planning, and decision-making capabilities. Algorithmic approaches for robot perception, localization, and simultaneous localization and mapping; control of non-linear systems, learning-based control, and robot motion planning; introduction to methodologies for reasoning under uncertainty, e.g., (partially observable) Markov decision processes. Extensive use of the Robot Operating System (ROS) for demonstrations and hands-on activities. Prerequisites: CS 106A or equivalent, CME 100 or equivalent (for linear algebra), and CME 106 or equivalent (for probability theory).
Terms: Aut | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints