2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 13 results for: molecular biology laboratory

BIO 11S: Microbiology: Human Health & Society

This course covers the fundamentals of microbiology and encompasses the tiny world of microbes (bacteria, archaea, fungi, viruses, and more). How have microbes impacted human health and society? It turns out that we cannot live without microbes, but we also have first-hand experience over the last few years of just how deadly and life-altering microbes can be! In exploring microbiology, we will take a multi-disciplinary approach combining molecular genetics (how gene expression is regulated in both prokaryotes and eukaryotes), biochemistry, and immunology. We will also explore key advances in biotechnology that have been made possible through our discovery of microbes and how they work including cloning, PCR, and CRISPR. This course will offer a laboratory component to allow students hands-on experience observing and working with bacteria and small eukaryotes and experimental design.
Terms: Sum | Units: 5 | UG Reqs: WAY-SMA
Instructors: Yamada, S. (PI)

BIO 43: Introduction to Laboratory Research in Neuronal Cell Biology

This course provides an authentic research experience where you will study the consequences of disease-related mutations in a neuronal kinesin (KIF1A). You will evaluate scientific arguments; make discoveries by generating, testing, and revising hypotheses; communicate findings to others through oral and poster presentations; and build confidence in yourselves as scientific thinkers. To do so, you will use behavioral, genetic, and cell biological tools to assay how KIF1A mutations affect C. elegans neurons, and connect your findings to clinical severity. Completed or co-requisite in introductory courses in cell and molecular biology ( BIO 82 and 83 or HUMBIO 2A and 3A) and ( CHEM 31A and 31B or CHEM 31M).
Terms: Aut, Spr | Units: 4

BIO 45: Introduction to Laboratory Research in Cell and Molecular Biology

Use modern molecular approaches to characterize a particular tumor-associated mutation in the human p53 tumor suppressor gene via expression and analysis in a yeast model system. Learn about the role of p53 as Guardian of the Genome and consider novel p53-directed tumor therapies through lectures and by reading and discussing journal articles. Use molecular visualization programs to examine the structure of the normal p53 protein and localize the alteration induced by the mutation you are investigating. Assay the ability of mutant p53 to activate expression of multiple reporter genes. Through facilitated discussions with teams of other students studying the same p53 mutant, consider a series of molecular explanations for your p53 mutant's functional defects. Conduct lab experiments to test these hypotheses, analyze data, collaboratively interpret these data, and present your findings through a team oral presentation, as well as a scientific poster. Although there are no pre-requisites to enroll in this class, it will be helpful if you have already taken or are concurrently enrolled in introductory courses in cell and molecular biology ( BIO 82 and 83 or HUMBIO 2A and 3A) and general chemistry ( CHEM 31A and 31B or CHEM 31M).
Terms: Aut, Win | Units: 4

BIO 120: Integrative and Experimental Microbiology (BIO 220)

To survive, grow, and reproduce, organisms coordinate different molecular processes so they can use available resources and cope with environmental conditions. This laboratory course explores molecular and cellular integration in bacteria. Experiments include the quantification of growth, mutational screens and mutant analysis, gene cloning, and measuring/engineering gene-expression. These "wet lab" approaches will be combined with "dry lab" approaches to analyze experimental findings and explore further the link between molecular processes, cell-physiology, and ecology. Prerequisite: MATH 51 or MATH 19, 20,21. Recommended: microbiology (e.g. BIO 62 or 162) and molecular biology/biochemistry/genetics courses (e.g. BIO 82 or 83). Enrollment via Application: https://forms.gle/etRHRhhaRJxUMyNW9
Terms: Spr | Units: 3 | Repeatable 1 times (up to 3 units total)

BIO 134: Molecular and cellular analysis of human cancer cell lines

This laboratory course will use cultured mammalian cells to study whether drug treatment can restore function to mutant versions of the tumor suppressor p53. Students will perform a variety of cellular and molecular techniques, including western blot and immunofluorescence, to test certain abilities of their mutant in the presence and absence of the drug. The project will culminate with student-designed experiments testing a functional aspect of p53 and presentation of the results for both expert and lay audiences. Strongly suggested prerequisites: BIO 45, BIO 82, 83, 86. Enrollment very limited; application required. Apply by 2/10/23 at: https://docs.google.com/forms/d/e/1FAIpQLSeIZAf2oAqwu8y9RMca4BjPTo8coCHl2asCk24kHMvGxPNlfg/viewform?usp=sf_link
Last offered: Spring 2023

BIO 142: Molecular Geomicrobiology Laboratory (EARTHSYS 143, ESS 143, ESS 243)

In this course, students will be studying the biosynthesis of cyclic lipid biomarkers, molecules that are produced by modern microbes that can be preserved in rocks that are over a billion years old and which geologist use as molecular fossils. Students will be tasked with identifying potential biomarker lipid synthesis genes in environmental genomic databases, expressing those genes in a model bacterial expression system in the lab, and then analyzing the lipid products that are produced. The overall goal is for students to experience the scientific research process including generating hypotheses, testing these hypotheses in laboratory experiments, and communicating their results through a publication style paper. Prerequisites: BIO83 and CHEM 121 or permission of the instructor.
Last offered: Spring 2022 | UG Reqs: WAY-SMA

BIO 220: Integrative and Experimental Microbiology (BIO 120)

To survive, grow, and reproduce, organisms coordinate different molecular processes so they can use available resources and cope with environmental conditions. This laboratory course explores molecular and cellular integration in bacteria. Experiments include the quantification of growth, mutational screens and mutant analysis, gene cloning, and measuring/engineering gene-expression. These "wet lab" approaches will be combined with "dry lab" approaches to analyze experimental findings and explore further the link between molecular processes, cell-physiology, and ecology. Prerequisite: MATH 51 or MATH 19, 20,21. Recommended: microbiology (e.g. BIO 62 or 162) and molecular biology/biochemistry/genetics courses (e.g. BIO 82 or 83). Enrollment via Application: https://forms.gle/etRHRhhaRJxUMyNW9
Terms: Spr | Units: 3 | Repeatable 1 times (up to 3 units total)

BIO 274S: Hopkins Microbiology Course (CEE 274S, ESS 253S, OCEANS 274)

Four-week, intensive. The interplay between molecular, physiological, ecological, evolutionary, and geochemical processes that constitute, cause, and maintain microbial diversity. How to isolate key microorganisms driving marine biological and geochemical diversity, interpret culture-independent molecular characterization of microbial species, and predict causes and consequences. Laboratory component: what constitutes physiological and metabolic microbial diversity; how evolutionary and ecological processes diversify individual cells into physiologically heterogeneous populations; and the principles of interactions between individuals, their population, and other biological entities in a dynamically changing microbial ecosystem. Prerequisites: CEE 274A and CEE 274B, or equivalents. Formerly BIOHOPK 274H.
Last offered: Summer 2021 | Repeatable for credit

BIOS 265: Introduction to Quantitative Reasoning in Biology

Mini-course. Focus on development of basic skills for quantitative reasoning in biology, including order-of-magnitude estimation and use of the broad spectrum of time scales to enable understanding. Primary examples include going from molecular size and energy scales to functions of single cells and going from mutational and selective processes acting on organisms to evolution of populations on laboratory and global scales. Examples will include processes relevant to the COVID-19 pandemic.
Last offered: Winter 2021

COMPMED 399: Graduate Research

Investigations sponsored by individual faculty members.Opportunities are available in comparative medicine and pathology, immuno-histochemistry, electron microscopy, molecular genetics, quantitative morphometry, neuroanatomy and neurophysiology of the hippocampus, pathogenesis of intestinal infections, immunopathology, biology of laboratory rodents, anesthesiology of laboratory animals, gene therapy of animal models of neurodegenerative diseases, and development and characterization of transgenic animal models. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints