2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 11 results for: CEE 207A

AFRICAAM 131: Racial Equity in Energy (CEE 130R, CEE 330)

The built environment and the energy systems that meet its requirements is a product of decisions forged in a context of historical inequity produced by cultural, political, and economic forces expressed through decisions at individual and institutional levels. This interdisciplinary course will examine the imprint of systemic racial inequity in the U.S. that has produced a clean energy divide and a heritage of environmental injustice. Drawing on current events, students will also explore contemporary strategies that center equity in the quest for rapid technology transitions in the energy sector to address climate change, public health, national security, and community resilience. Prerequisites: By permission of the instructor. Preferable to have completed Understand Energy ( CEE 107A/207A/ EarthSys 103/ CEE 107S/207S) or a similar course at another institution if a graduate student.
Terms: Aut | Units: 2-3

CEE 107R: E^3: Extreme Energy Efficiency (CEE 207R)

Be part of a unique course about extreme energy efficiency and integrative design! We will meet once a week throughout the quarter. E^3 will focus on efficiency techniques' design, performance, integration, barrier-busting, profitable business-led implementation, and implications for energy supply, competitive success, environment, development, security, etc. Examples will span very diverse sectors, applications, issues, and disciplines, covering different energy themes throughout the quarter: buildings, transportation, industry, and implementation and implications, including renewable energy synergy and integration. The course will be composed of keynote lectures, exercises, and interactive puzzlers, synthesizing integrative design principles. Exercises will illuminate real-world design challenges RMI has faced, in which students will explore clean-sheet solutions that meet end-use demands and optimize whole-system resource efficiency, seeking expanding rather than diminishing returns more »
Be part of a unique course about extreme energy efficiency and integrative design! We will meet once a week throughout the quarter. E^3 will focus on efficiency techniques' design, performance, integration, barrier-busting, profitable business-led implementation, and implications for energy supply, competitive success, environment, development, security, etc. Examples will span very diverse sectors, applications, issues, and disciplines, covering different energy themes throughout the quarter: buildings, transportation, industry, and implementation and implications, including renewable energy synergy and integration. The course will be composed of keynote lectures, exercises, and interactive puzzlers, synthesizing integrative design principles. Exercises will illuminate real-world design challenges RMI has faced, in which students will explore clean-sheet solutions that meet end-use demands and optimize whole-system resource efficiency, seeking expanding rather than diminishing returns to investments, i.e. making big savings cheaper than small ones. Students will work closely and interactively with the instructors Amory Lovins, cofounder and Chief Scientist of Rocky Mountain Institute (RMI), Dr. Joel Swisher, former RMI managing director and Stanford instructor in CEE, more recently director of the Institute for Energy Studies at Western Washington University, and Dr. Holmes Hummel, founder of Clean Energy Works. All backgrounds and disciplines, undergraduate and graduate, are welcome to enroll. There is no application this year. Solid technical grounding and acquaintance with basic economics and business concepts will be helpful. Prerequisite - completion of one of the following courses or their equivalent is required: CEE 107A/207A/ Earthsys 103, CEE 107S/ CEE 207S, CEE 176A, CEE 176B. Course details are available at the website: https://energy.stanford.edu/extreme-energy-efficiency
Terms: Win, Spr | Units: 3-5

CEE 107S: Understand Energy - Essentials (CEE 207S)

Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. Students will learn the fundamentals of each energy resource -- including significance and potential, drivers and barriers, policy and regulation, and social, economic, and environmental impacts -- and will be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, hydrogen, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 3 units, which includes lecture, readings and videos, and homewor more »
Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. Students will learn the fundamentals of each energy resource -- including significance and potential, drivers and barriers, policy and regulation, and social, economic, and environmental impacts -- and will be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, hydrogen, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 3 units, which includes lecture, readings and videos, and homework assignments. This is a course for all: pre-majors and majors, with any background - no prior energy knowledge necessary. For a course that covers all of this plus goes more in-depth, check out CEE 107A/207A - ENERGY 107A/207A - EarthSys 103 Understand Energy offered in the autumn and spring quarters (students should not take both for credit). Website: https://understand-energy-course.stanford.edu/ Prerequisites: Algebra.
Terms: Sum | Units: 3 | UG Reqs: WAY-SI

CEE 130R: Racial Equity in Energy (AFRICAAM 131, CEE 330)

The built environment and the energy systems that meet its requirements is a product of decisions forged in a context of historical inequity produced by cultural, political, and economic forces expressed through decisions at individual and institutional levels. This interdisciplinary course will examine the imprint of systemic racial inequity in the U.S. that has produced a clean energy divide and a heritage of environmental injustice. Drawing on current events, students will also explore contemporary strategies that center equity in the quest for rapid technology transitions in the energy sector to address climate change, public health, national security, and community resilience. Prerequisites: By permission of the instructor. Preferable to have completed Understand Energy ( CEE 107A/207A/ EarthSys 103/ CEE 107S/207S) or a similar course at another institution if a graduate student.
Terms: Aut | Units: 2-3

CEE 207A: Understand Energy (CEE 107A, EARTHSYS 103, ENERGY 107A, ENERGY 207A)

NOTE: This course will be taught in-person on main campus, lectures are recorded and available asynchronously. Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. In taking this course, students will not only understand the fundamentals of each energy resource - including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts - students will also be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emiss more »
NOTE: This course will be taught in-person on main campus, lectures are recorded and available asynchronously. Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. In taking this course, students will not only understand the fundamentals of each energy resource - including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts - students will also be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The 4 unit course includes lecture and in-class discussion, readings and videos, homework assignments, one on-campus field trip during lecture time and two off-campus field trips with brief report assignments. Off-campus field trips to wind farms, solar farms, nuclear power plants, natural gas power plants, hydroelectric dams, etc. Enroll for 5 units to also attend the Workshop, an interactive discussion section on cross-cutting topics that meets once per week for 80 minutes (Mondays, 12:30 PM - 1:50 PM). Open to all: pre-majors and majors, with any background! Website: https://understand-energy-course.stanford.edu/ CEE 107S/207S Understand Energy: Essentials is a shorter (3 unit) version of this course, offered summer quarter. Students should not take both for credit. Prerequisites: Algebra.
Terms: Aut, Spr | Units: 3-5

CEE 207R: E^3: Extreme Energy Efficiency (CEE 107R)

Be part of a unique course about extreme energy efficiency and integrative design! We will meet once a week throughout the quarter. E^3 will focus on efficiency techniques' design, performance, integration, barrier-busting, profitable business-led implementation, and implications for energy supply, competitive success, environment, development, security, etc. Examples will span very diverse sectors, applications, issues, and disciplines, covering different energy themes throughout the quarter: buildings, transportation, industry, and implementation and implications, including renewable energy synergy and integration. The course will be composed of keynote lectures, exercises, and interactive puzzlers, synthesizing integrative design principles. Exercises will illuminate real-world design challenges RMI has faced, in which students will explore clean-sheet solutions that meet end-use demands and optimize whole-system resource efficiency, seeking expanding rather than diminishing returns more »
Be part of a unique course about extreme energy efficiency and integrative design! We will meet once a week throughout the quarter. E^3 will focus on efficiency techniques' design, performance, integration, barrier-busting, profitable business-led implementation, and implications for energy supply, competitive success, environment, development, security, etc. Examples will span very diverse sectors, applications, issues, and disciplines, covering different energy themes throughout the quarter: buildings, transportation, industry, and implementation and implications, including renewable energy synergy and integration. The course will be composed of keynote lectures, exercises, and interactive puzzlers, synthesizing integrative design principles. Exercises will illuminate real-world design challenges RMI has faced, in which students will explore clean-sheet solutions that meet end-use demands and optimize whole-system resource efficiency, seeking expanding rather than diminishing returns to investments, i.e. making big savings cheaper than small ones. Students will work closely and interactively with the instructors Amory Lovins, cofounder and Chief Scientist of Rocky Mountain Institute (RMI), Dr. Joel Swisher, former RMI managing director and Stanford instructor in CEE, more recently director of the Institute for Energy Studies at Western Washington University, and Dr. Holmes Hummel, founder of Clean Energy Works. All backgrounds and disciplines, undergraduate and graduate, are welcome to enroll. There is no application this year. Solid technical grounding and acquaintance with basic economics and business concepts will be helpful. Prerequisite - completion of one of the following courses or their equivalent is required: CEE 107A/207A/ Earthsys 103, CEE 107S/ CEE 207S, CEE 176A, CEE 176B. Course details are available at the website: https://energy.stanford.edu/extreme-energy-efficiency
Terms: Win, Spr | Units: 3-5

CEE 207S: Understand Energy - Essentials (CEE 107S)

Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. Students will learn the fundamentals of each energy resource -- including significance and potential, drivers and barriers, policy and regulation, and social, economic, and environmental impacts -- and will be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, hydrogen, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 3 units, which includes lecture, readings and videos, and homewor more »
Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. Students will learn the fundamentals of each energy resource -- including significance and potential, drivers and barriers, policy and regulation, and social, economic, and environmental impacts -- and will be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, hydrogen, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 3 units, which includes lecture, readings and videos, and homework assignments. This is a course for all: pre-majors and majors, with any background - no prior energy knowledge necessary. For a course that covers all of this plus goes more in-depth, check out CEE 107A/207A - ENERGY 107A/207A - EarthSys 103 Understand Energy offered in the autumn and spring quarters (students should not take both for credit). Website: https://understand-energy-course.stanford.edu/ Prerequisites: Algebra.
Terms: Sum | Units: 3

CEE 330: Racial Equity in Energy (AFRICAAM 131, CEE 130R)

The built environment and the energy systems that meet its requirements is a product of decisions forged in a context of historical inequity produced by cultural, political, and economic forces expressed through decisions at individual and institutional levels. This interdisciplinary course will examine the imprint of systemic racial inequity in the U.S. that has produced a clean energy divide and a heritage of environmental injustice. Drawing on current events, students will also explore contemporary strategies that center equity in the quest for rapid technology transitions in the energy sector to address climate change, public health, national security, and community resilience. Prerequisites: By permission of the instructor. Preferable to have completed Understand Energy ( CEE 107A/207A/ EarthSys 103/ CEE 107S/207S) or a similar course at another institution if a graduate student.
Terms: Aut | Units: 2-3

ENERGY 176: Electric System Planning with Emerging Generation Technologies (ENERGY 276)

The current electric system was built with a focus on large, continuous-duty baseload power generators fueled primarily by coal and nuclear generation. The electric grid was designed to meet local needs rather than regional or national ones, leading to a shortage of transmission capacity for integrating renewable energy sources like wind and solar. This shortage has created a backlog of interconnection applications for utility-scale wind, solar, and energy storage projects to reach wholesale power markets. The problem is compounded by the fact that transmission permitting is largely a state issue, with each state prioritizing its own interests. As a result, renewable developers face high network upgrade costs to connect wind, solar, and storage to the transmission system, creating a chicken-egg cycle that impedes the clean energy transition. This course aims to provide a comprehensive understanding of electric grid planning, focusing on the integration of emerging generation technologi more »
The current electric system was built with a focus on large, continuous-duty baseload power generators fueled primarily by coal and nuclear generation. The electric grid was designed to meet local needs rather than regional or national ones, leading to a shortage of transmission capacity for integrating renewable energy sources like wind and solar. This shortage has created a backlog of interconnection applications for utility-scale wind, solar, and energy storage projects to reach wholesale power markets. The problem is compounded by the fact that transmission permitting is largely a state issue, with each state prioritizing its own interests. As a result, renewable developers face high network upgrade costs to connect wind, solar, and storage to the transmission system, creating a chicken-egg cycle that impedes the clean energy transition. This course aims to provide a comprehensive understanding of electric grid planning, focusing on the integration of emerging generation technologies, including solar, wind, geothermal, and energy storage. The course covers a range of key issues related to electric grid planning, including policy, economics, environmental impacts, and the latest tools and techniques for electric grid planning. Students will learn how to evaluate and analyze the economic principles of electricity systems, conduct a cost-benefit analysis of emerging generation technologies, and identify financing options for these technologies. The course uses the project-based learning approach. Students will work on three different real-world problems: the US, Germany, and a local context. This hands-on approach will allow students to gain practical experience in designing and implementing electricity systems that integrate emerging-generation technologies. By the end of the course, students will have a deep understanding of the challenges and opportunities presented by the integration of emerging generations into the electric grid and will be equipped with the skills and knowledge needed to design and implement effective solutions. Open-source tools (written in Python) and datasets for the course projects will be provided. Prerequisites: Students should be familiar with basic energy systems and are encouraged to take the ENERGY 101, 102, and "Understand Energy" course ( CEE 107A/207A - ENERGY 107A/207A - EARTHSYS103) first; or permission of instructor.
Terms: Aut | Units: 3

ENERGY 207A: Understand Energy (CEE 107A, CEE 207A, EARTHSYS 103, ENERGY 107A)

NOTE: This course will be taught in-person on main campus, lectures are recorded and available asynchronously. Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. In taking this course, students will not only understand the fundamentals of each energy resource - including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts - students will also be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emiss more »
NOTE: This course will be taught in-person on main campus, lectures are recorded and available asynchronously. Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. In taking this course, students will not only understand the fundamentals of each energy resource - including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts - students will also be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The 4 unit course includes lecture and in-class discussion, readings and videos, homework assignments, one on-campus field trip during lecture time and two off-campus field trips with brief report assignments. Off-campus field trips to wind farms, solar farms, nuclear power plants, natural gas power plants, hydroelectric dams, etc. Enroll for 5 units to also attend the Workshop, an interactive discussion section on cross-cutting topics that meets once per week for 80 minutes (Mondays, 12:30 PM - 1:50 PM). Open to all: pre-majors and majors, with any background! Website: https://understand-energy-course.stanford.edu/ CEE 107S/207S Understand Energy: Essentials is a shorter (3 unit) version of this course, offered summer quarter. Students should not take both for credit. Prerequisites: Algebra.
Terms: Aut, Spr | Units: 3-5
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints