2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 10 of 63 results for: GEOPHYS ; Currently searching offered courses. You can also include unoffered courses

GEOPHYS 20N: Predicting Volcanic Eruptions

The physics and chemistry of volcanic processes and modern methods of volcano monitoring. Volcanoes as manifestations of the Earth's internal energy and hazards to society. How earth scientists better forecast eruptive activity by monitoring seismic activity, bulging of the ground surface, and the discharge of volcanic gases, and by studying deposits from past eruptions. Focus is on the interface between scientists and policy makers and the challenges of decision making with incomplete information. Field trip to Mt. St. Helens, site of the 1980 eruption.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 54N: The Space Mission to Europa

Jupiter's icy moon Europa is a leading candidate in the search for life in our solar system outside of Earth. NASA's upcoming Europa Clipper mission would investigate the habitability of the moon using a suite of nine geophysical instruments. In this course, we will use the mission as a central text around which to explore the intersection of science, engineering, management, economics, culture, and politics involved in any modern big science enterprise.
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA | Grading: Letter (ABCD/NP)

GEOPHYS 60N: Man versus Nature: Coping with Disasters Using Space Technology (EE 60N)

Preference to freshman. Natural hazards, earthquakes, volcanoes, floods, hurricanes, and fires, and how they affect people and society; great disasters such as asteroid impacts that periodically obliterate many species of life. Scientific issues, political and social consequences, costs of disaster mitigation, and how scientific knowledge affects policy. How spaceborne imaging technology makes it possible to respond quickly and mitigate consequences; how it is applied to natural disasters; and remote sensing data manipulation and analysis. GER:DB-EngrAppSci
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Zebker, H. (PI)

GEOPHYS 70: The Water Course (EARTHSYS 104)

The Central Valley of California provides a third of the produce grown in the U.S., but has a desert climate, thus raising concerns about both food and water security. The pathway that water takes rainfall to the irrigation of fields (the water course) determines the quantity and quality of the available water. Working with various data sources (remote sensing, gauges, wells) allows us to model the water budget in the valley and explore the way in which recent droughts and increasing demand are impacting freshwater supplies.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 90: Earthquakes and Volcanoes (EARTHSYS 113)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 100: Directed Reading

(Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Grading: Letter (ABCD/NP)

GEOPHYS 110: Introduction to the foundations of contemporary geophysics (EARTHSYS 110)

Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 112: Exploring Geosciences with MATLAB

How to use MATLAB as a tool for research and technical computing, including 2-D and 3-D visualization features, numerical capabilities, and toolboxes. Practical skills in areas such as data analysis, regressions, optimization, spectral analysis, differential equations, image analysis, computational statistics, and Monte Carlo simulations. Emphasis is on scientific and engineering applications. Offered every year, autumn quarter.
Terms: Aut | Units: 1-3 | Grading: Letter or Credit/No Credit

GEOPHYS 118X: Disasters, Decisions, Development in Sustainable Urban Systems (ESS 118, ESS 218, GEOPHYS 218X, GS 118, GS 218, POLISCI 224A, PUBLPOL 118)

CEE 224X of the CEE 224XYZ SUS Project series is joining forces with D3: Disasters, Decisions, Development to offer D3+SUS, which will connect principles of sustainable urban systems with the challenge of increasing resilience in the San Francisco Bay Area. The project-based learning course is designed to align with the Resilient By Design | Bay Area Challenge ( http://www.resilientbayarea.org/); students will learn the basic concepts of resilience and tools of risk analysis while applying those mindsets and toolsets to a collective research product delivered to the RBD community. Students who take D3+SUS are encouraged to continue on to CEE 224Y and CEE 224Z, in which teams will be paired with local partners and will develop interventions to improve the resilience of local communities. For more information, visit http://sus.stanford.edu/courses.
Terms: Aut | Units: 3-5 | Grading: Letter (ABCD/NP)

GEOPHYS 118Y: Sustainable Urban Systems Project (CEE 124Y, CEE 224Y, GEOPHYS 218Y)

Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Terms: Win | Units: 1-5 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints