2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

1 - 10 of 12 results for: DBIO ; Currently searching offered courses. You can also include unoffered courses

DBIO 199: Undergraduate Research

Students undertake investigations sponsored by individual faculty members. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit | Grading: Letter or Credit/No Credit

DBIO 200: Genetics and Developmental Biology Training Camp (GENE 200)

Open to first year Department of Genetics and Developmental Biology students, to others with consent of instructors. Introduction to basic manipulations, both experimental and conceptual, in genetics and developmental biology.
Terms: Aut | Units: 1 | Grading: Medical Satisfactory/No Credit

DBIO 201: Cells and Signaling in Regenerative Medicine

Conserved molecular and cellular pathways regulate tissue and organ homeostasis. Errors in these pathways result in human diseases.nManipulation of key cells and signals is leading to new strategies for stimulating tissue formation and regeneration.nTopics: Stem cells. Molecules regulating stem cell proliferation and differentiation. Signaling pathways. Gene regulation. Embryonic stemncells. Programmed cell death. Cell lineage. Tissue regeneration. Use of stem cells in transplantation. Organoids. Emphasis on links between stem cells, signals, and clinically significant topics including diabetes, bone loss, cancer, and aging.
Terms: Win | Units: 2 | Grading: Medical Option (Med-Ltr-CR/NC)
Instructors: Nusse, R. (PI)

DBIO 210: Developmental Biology

Current areas of research in developmental biology. How organismic complexity is generated during embryonic and post-embryonic development. The roles of genetic networks, gene regulation ,organogenesis, tissue patterning, cell lineage, maternal inheritance, cell-cell communication, signaling, and regeneration in developmental processes in well- studied organisms such as vertebrates, insects, and nematodes. Team-taught. Students meet with faculty to discuss current papers from the literature. Prerequisite: graduate standing, consent of instructor. Recommended: familiarity with basic techniques and experimental rationales of molecular biology, biochemistry, and genetics.
Terms: Spr | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)
Instructors: Barna, M. (PI)

DBIO 215: Frontiers in Biological Research (BIOC 215, GENE 215)

Students analyze cutting edge science, develop a logical framework for evaluating evidence and models, and enhance their ability to design original research through exposure to experimental tools and strategies. The class runs in parallel with the Frontiers in Biological Research seminar series. Students and faculty meet on the Tuesday preceding each seminar to discuss a landmark paper in the speaker's field of research. Following the Wednesday seminar, students meet briefly with the speaker for a free-range discussion which can include insights into the speakers' paths into science and how they pick scientific problems.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Medical Satisfactory/No Credit

DBIO 219: Special Topics in Development and Cancer: Evolutionary and Quantitative Perspectives (BIOE 219)

The course will serve as a literature-based introductory guide for synthesis of ideas in developmental biology and cancer, with an emphasis on evolutionary analysis and quantitative thinking. The goal for this course is for students to understand how we know what we know about fundamental questions in the field of developmental biology and cancer, and how we ask good questions for the future. We will discuss how studying model organisms has provided the critical breakthroughs that have helped us understand developmental and disease mechanisms in higher organisms. The students are expected to be able to read the primary literature and think critically about experiments to understand what is actually known and what questions still remain unanswered. Students will develop skills in the educated guesswork to apply order-of-magnitude methodology to questions in development and cancer.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Wang, B. (PI)

DBIO 273A: The Human Genome Source Code (BIOMEDIN 273A, CS 273A)

A computational introduction to the most amazing programming language on the planet: your genome. Topics include genome sequencing (assembling source code from code fragments); the human genome functional landscape: variable assignments (genes), control-flow logic (gene regulation) and run-time stack (epigenomics); human disease and personalized genomics (as a hunt for bugs in the human code); genome editing (code injection) to cure the incurable; and the source code behind amazing animal adaptations. Algorithmic approaches will introduce ideas from computational genomics, machine learning and natural language processing. Course includes primers on molecular biology, and text processing languages. No prerequisites.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Bejerano, G. (PI)

DBIO 299: Directed Reading in Developmental Biology

Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit | Grading: Medical Option (Med-Ltr-CR/NC)

DBIO 299C: CURRICULAR PRACTICAL TRAINING

CPT Course required for international students completing degree requirements.
Terms: Aut | Units: 1 | Grading: Medical Satisfactory/No Credit

DBIO 370: Medical Scholars Research

Provides an opportunity for student and faculty interaction, as well as academic credit and financial support, to medical students who undertake original research. Enrollment is limited to students with approved projects.
Terms: Aut, Win, Spr, Sum | Units: 4-18 | Repeatable for credit | Grading: Medical School MD Grades
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints