2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 10 of 179 results for: CS ; Currently searching offered courses. You can also include unoffered courses

CS 1C: Introduction to Computing at Stanford

For those with limited experience with computers or who want to learn more about Stanford's computing environment. Topics include: computer maintenance and security, computing resources, Internet privacy, and copyright law. One-hour lecture/demonstration in dormitory clusters prepared and administered weekly by the Resident Computer Consultant (RCC). Final project. Not a programming course.
Terms: Aut | Units: 1 | Grading: Satisfactory/No Credit
Instructors: Smith, S. (PI)

CS 1U: Practical Unix

A practical introduction to using the Unix operating system with a focus on Linux command line skills. Class will consist of video tutorials and weekly hands-on lab sections. The time listed on AXESS is for the first week's logistical meeting only. Topics include: grep and regular expressions, ZSH, Vim and Emacs, basic and advanced GDB features, permissions, working with the file system, revision control, Unix utilities, environment customization, and using Python for shell scripts. Topics may be added, given sufficient interest. Course website: http://cs1u.stanford.edu
Terms: Aut, Win, Spr | Units: 1 | Grading: Satisfactory/No Credit

CS 7: Personal Finance for Engineers

Introduction to the fundamentals and analysis specifically needed by engineers to make informed and intelligent financial decisions. Course will focus on actual industry-based financial information from technology companies and realistic financial issues. Topics include: behavioral finance, budgeting, debt, compensation, stock options, investing and real estate. No prior finance or economics experience required.
Terms: Aut | Units: 1 | Grading: Satisfactory/No Credit
Instructors: Nash, A. (PI)

CS 9: Problem-Solving for the CS Technical Interview

This course will prepare students to interview for software engineering and related internships and full-time positions in industry. Drawing on multiple sources of actual interview questions, students will learn key problem-solving strategies specific to the technical/coding interview. Students will be encouraged to synthesize information they have learned across different courses in the major. Emphasis will be on the oral and combination written-oral modes of communication common in coding interviews, but which are unfamiliar settings for problem solving for many students. Prerequisites: CS 106B or X.
Terms: Aut | Units: 1 | Grading: Satisfactory/No Credit

CS 20: Tensorflow for Deep Learning Research

This course will cover the fundamentals and contemporary usage of the Tensorflow library for deep learning research. Through the course, students will use Tensorflow to build models of different complexity, from simple linear/logistic regression to convolutional neural network and recurrent neural networks with LSTM to solve tasks such as word embeddings, translation, optical character recognition. Students will also learn best practices to structure a model and manage research experiments. Prerequisites: CS229 or CS224D/N.
Terms: Win | Units: 2 | Grading: Credit/No Credit
Instructors: Manning, C. (PI)

CS 22A: The Social & Economic Impact of Artificial Intelligence (IPS 200)

Recent advances in computing may place us at the threshold of a unique turning point in human history. Soon we are likely to entrust management of our environment, economy, security, infrastructure, food production, healthcare, and to a large degree even our personal activities, to artificially intelligent computer systems. The prospect of "turning over the keys" to increasingly autonomous systems raises many complex and troubling questions. How will society respond as versatile robots and machine-learning systems displace an ever-expanding spectrum of blue- and white-collar workers? Will the benefits of this technological revolution be broadly distributed or accrue to a lucky few? How can we ensure that these systems respect our ethical principles when they make decisions at speeds and for rationales that exceed our ability to comprehend? What, if any, legal rights and responsibilities should we grant them? And should we regard them merely as sophisticated tools or as a newly emerging form of life? The goal of CS22 is to equip students with the intellectual tools, ethical foundation, and psychological framework to successfully navigate the coming age of intelligent machines.
Terms: Win | Units: 1 | Grading: Satisfactory/No Credit
Instructors: Kaplan, J. (PI)

CS 28: Artificial Intelligence, Entrepreneurship and Society in the 21st Century and Beyond

Technical developments in artificial intelligence (AI) have opened up new opportunities for entrepreneurship, as well as raised profound longer term questions about how human societal and economic systems may be re­organized to accommodate the rise of intelligent machines. In this course, closely co­taught by a Stanford professor and a leading Silicon Valley venture capitalist, we will examine the current state of the art capabilities of existing artificial intelligence systems, as well as economic challenges and opportunities in early stage startups and large companies that could leverage AI. We will focus on gaps between business needs and current technical capabilities to identify high impact directions for the development of future AI technology. Simultaneously, we will explore the longer term societal impact of AI driven by inexorable trends in technology and entrepreneurship. The course includes guest lectures from leading technologists and entrepreneurs who employ AI in a variety of fields, including healthcare, education, self­driving cars, computer security, natural language interfaces, computer vision systems, and hardware acceleration.
Terms: Aut | Units: 2 | Grading: Credit/No Credit
Instructors: Ganguli, S. (PI)

CS 43: Functional Programming in Clojure

Clojure is a dialect of Lisp that runs on the JVM, CLR, or Javascript engine. This course explores the fundamentals and philosophy of Clojure, with emphasis on the benefits of immutability and functional programming that make it such a powerful and fun language. Topics include: immutability, functional programming (function composition, higher order functions), concurrency (atoms, promises, futures, actors, Software Transactional Memory, etc), LISP (REPL-driven development, homoiconicity, macros), and interop (between Clojure code and code native to the host VM). The course also explores design paradigms and looks at the differences between functional programing and object-oriented programing, as well as bottom-up versus top-down design.
Terms: Win | Units: 2 | Grading: Satisfactory/No Credit
Instructors: Cain, J. (PI)

CS 45N: Computers and Photography: From Capture to Sharing

Preference to freshmen with experience in photography and use of computers. Elements of photography, such as lighting, focus, depth of field, aperture, and composition. How a photographer makes photos available for computer viewing, reliably stores them, organizes them, tags them, searches them, and distributes them online. No programming experience required. Digital SLRs and editing software will be provided to those students who do not wish to use their own.
Terms: Aut, Spr | Units: 3-4 | UG Reqs: WAY-CE | Grading: Letter or Credit/No Credit

CS 49N: Using Bits to Control Atoms

This is a crash course in how to use a stripped-down computer system aboutnthe size of a credit card (the rasberry pi computer) to control as manyndifferent sensors as we can implement in ten weeks, including LEDs, motionnsensors, light controllers, and accelerometers. The ability to fearlesslyngrab a set of hardware devices, examine the data sheet to see how to usenit, and stitch them together using simple code is a secret weapon thatnsoftware-only people lack, and allows you to build many interestingngadgets. We will start with a ``bare metal'' system --- no operatingnsystem, no support --- and teach you how to read device data sheetsndescribing sensors and write the minimal code needed to control themn(including how to debug when things go wrong, as they always do). Thisncourse differs from most in that it is deliberately mostly about what andnwhy rather than how --- our hope is that the things you are able at the endnwill inspire you to follow the rest of the CS curriculum to understandnbetter how things you've used work. Prerequisites: knowledge of the Cnprogramming language. A Linux or Mac laptop that you are comfortablencoding on.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Engler, D. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints