2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 10 of 12 results for: APPPHYS ; Currently searching winter courses. You can expand your search to include all quarters

APPPHYS 100: The Questions of Clay: Craft, Creativity and Scientific Process

Students will create individual studio portfolios of ceramic work and pursue technical investigations of clay properties and the firing process using modern scientific equipment. Emphasis on development of creative process; parallels between science and traditional craft; integration of creative expression with scientific method and analysis. Prior ceramics experience desirable but not necessary. Limited enrollment. Prerequisites: any level of background in physics, Instructor permission.
Terms: Win, alternate years, not given next year | Units: 5 | UG Reqs: WAY-CE, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Mabuchi, H. (PI)

APPPHYS 204: Quantum Materials

Applied Physics Core course appropriate for graduate students and advanced undergraduate students with prior knowledge of elementary quantum mechanics. Introduction to materials and topics of current interest. Topics include superconductivity, magnetism, charge and spin density waves, frustration, classical and quantum phase transitions, multiferroics, and interfaces. Prerequisite: elementary course in quantum mechanics.
Terms: Win | Units: 4 | Grading: Letter or Credit/No Credit

APPPHYS 205: Introduction to Biophysics (BIO 126, BIO 226)

Core course appropriate for advanced undergraduate students and graduate students with prior knowledge of calculus and a college physics course. Introduction to how physical principles offer insights into modern biology, with regard to the structural, dynamical, and functional organization of biological systems. Topics include the roles of free energy, diffusion, electromotive forces, non-equilibrium dynamics, and information in fundamental biological processes.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Ganguli, S. (PI)

APPPHYS 207: Laboratory Electronics

Lecture/lab emphasizing analog and digital electronics for lab research. RC and diode circuits. Transistors. Feedback and operational amplifiers. Active filters and circuits. Pulsed circuits, voltage regulators, and power circuits. Precision circuits, low-noise measurement, and noise reduction techniques. Circuit simulation tools. Analog signal processing techniques and modulation/demodulation. Principles of synchronous detection and applications of lock-in amplifiers. Common laboratory measurements and techniques illustrated via topical applications. Prerequisites: undergraduate device and circuit exposure.
Terms: Win | Units: 4 | Grading: Letter (ABCD/NP)
Instructors: Fox, J. (PI)

APPPHYS 228: Quantum Hardware

Review of the basics of quantum information. Quantum optics: photon counting, detection, and amplification. Quantum noise in parametric processes. Quantum sensing: standard quantum limits, squeezed light, and spin squeezing. Gaussian quantum information. Quantum theory of electric circuits, electromagnetic components, and nanomechanical devices. Integrated quantum systems: superconductivity and Josephson qubits, measurement-based quantum computing with photons, spin qubits, topological systems. Prerequisites: PHYSICS 134/234 and APPPHYS 203.
Terms: Win | Units: 4 | Grading: Letter or Credit/No Credit

APPPHYS 290: Directed Studies in Applied Physics

Special studies under the direction of a faculty member for which academic credit may properly be allowed. May include lab work or directed reading.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Satisfactory/No Credit

APPPHYS 390: Dissertation Research

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Satisfactory/No Credit

APPPHYS 393: Biophysics of Solvation (BIOPHYS 393)

Statistical mechanics of water-protein or water-DNA (or RNA) interactions; effects of coulomb forces on molecular hydration shells and ion clouds; limitations of the Poisson-Boltzmann equations; DNA collapse, DNA-protein interactions; structure-function relationships in ion channels.
Terms: Win, alternate years, not given next year | Units: 3 | Grading: Letter or Credit/No Credit

APPPHYS 470: Condensed Matter Seminar

Current research and literature; offered by faculty, students, and outside specialists. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints