2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

11 - 20 of 78 results for: all courses

CS 103: Mathematical Foundations of Computing

What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in first-order logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and first-order logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole principle, mathematical induction, finite automata, regular expressions, the Myhill-Nerode theorem, context-free grammars, Turing machines, decidable and recognizable languages, self-reference and undecidability, verifiers, and the P versus NP question. Students with significant proofwriting experience are encouraged to instead take CS154. Students interested in extra practice and support with the course are encouraged to concurrently enroll in CS103A. Prerequisite: CS106B or equivalent. CS106B may be taken concurrently with CS103.
Terms: Aut, Win, Spr | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

ECON 50: Economic Analysis I

Individual consumer and firm behavior under perfect competition. The role of markets and prices in a decentralized economy. Monopoly in partial equilibrium. Economic tools developed from multivariable calculus using partial differentiation and techniques for constrained and unconstrained optimization. Prerequisites: Econ 1 or 1V, and Math 51 or Math 51A or CME 100 or CME 100A.
Terms: Aut, Win, Spr, Sum | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR, WAY-SI | Grading: Letter or Credit/No Credit
Instructors: Makler, C. (PI)

ECON 102A: Introduction to Statistical Methods (Postcalculus) for Social Scientists

Probabilistic modeling and statistical techniques relevant for economics. Concepts include: probability trees, conditional probability, random variables, discrete and continuous distributions, correlation, central limit theorems, point estimation, hypothesis testing and confidence intervals for both one and two populations. Prerequisite: MATH 20 or equivalent.
Terms: Aut, Win | Units: 5 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-SI | Grading: Letter or Credit/No Credit
Instructors: McKeon, S. (PI)

EE 103: Introduction to Matrix Methods (CME 103)

Introduction to applied linear algebra with emphasis on applications. Vectors, norm, and angle; linear independence and orthonormal sets; applications to document analysis. Clustering and the k-means algorithm. Matrices, left and right inverses, QR factorization. Least-squares and model fitting, regularization and cross-validation. Constrained and nonlinear least-squares. Applications include time-series prediction, tomography, optimal control, and portfolio optimization. Undergraduate students should enroll for 5 units, and graduate students should enroll for 3 units. Prerequisites: MATH 51 or CME 100, and basic knowledge of computing ( CS 106A is more than enough, and can be taken concurrently). EE103/CME103 and Math 104 cover complementary topics in applied linear algebra. The focus of EE103 is on a few linear algebra concepts, and many applications; the focus of Math 104 is on algorithms and concepts.
Terms: Aut | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit
Instructors: Osgood, B. (PI)

ENGR 154: Vector Calculus for Engineers (CME 100)

Computation and visualization using MATLAB. Differential vector calculus: analytic geometry in space, functions of several variables, partial derivatives, gradient, unconstrained maxima and minima, Lagrange multipliers. Introduction to linear algebra: matrix operations, systems of algebraic equations, methods of solution and applications. Integral vector calculus: multiple integrals in Cartesian, cylindrical, and spherical coordinates, line integrals, scalar potential, surface integrals, Green¿s, divergence, and Stokes¿ theorems. Examples and applications drawn from various engineering fields. Prerequisites: 10 units of AP credit (Calc BC with 5, or Calc AB with 5 or placing out of the single variable math placement test: https://exploredegrees-nextyear.stanford.edu/undergraduatedegreesandprograms/#aptextt), or Math 19-21.
Terms: Aut, Win, Spr | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

ENGR 155A: Ordinary Differential Equations for Engineers (CME 102)

Analytical and numerical methods for solving ordinary differential equations arising in engineering applications: Solution of initial and boundary value problems, series solutions, Laplace transforms, and nonlinear equations; numerical methods for solving ordinary differential equations, accuracy of numerical methods, linear stability theory, finite differences. Introduction to MATLAB programming as a basic tool kit for computations. Problems from various engineering fields. Prerequisite: 10 units of AP credit (Calc BC with 5, or Calc AB with 5 or placing out of the single variable math placement test: https://exploredegreesnextyear.stanford.edu/undergraduatedegreesandprograms/#aptextt),), or Math 19-21. Recommended: CME100.
Terms: Aut, Win, Spr, Sum | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit
Instructors: Le, H. (PI)

ENGR 155B: Linear Algebra and Partial Differential Equations for Engineers (CME 104)

Linear algebra: matrix operations, systems of algebraic equations, Gaussian elimination, undetermined and overdetermined systems, coupled systems of ordinary differential equations, eigensystem analysis, normal modes. Fourier series with applications, partial differential equations arising in science and engineering, analytical solutions of partial differential equations. Numerical methods for solution of partial differential equations: iterative techniques, stability and convergence, time advancement, implicit methods, von Neumann stability analysis. Examples and applications from various engineering fields. Prerequisite: CME 102/ ENGR 155A.
Terms: Spr | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit
Instructors: Khayms, V. (PI)

ENGR 155C: Introduction to Probability and Statistics for Engineers (CME 106)

Probability: random variables, independence, and conditional probability; discrete and continuous distributions, moments, distributions of several random variables. Topics in mathematical statistics: random sampling, point estimation, confidence intervals, hypothesis testing, non-parametric tests, regression and correlation analyses; applications in engineering, industrial manufacturing, medicine, biology, and other fields. Prerequisite: CME 100/ENGR154 or MATH 51 or 52.
Terms: Win, Sum | Units: 4 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit
Instructors: Khayms, V. (PI)

HUMBIO 88: Introduction to Statistics for the Health Sciences

Students will learn the statistical tools used to describe and analyze data in the fields of medicine and epidemiology. This very applied course will rely on current research questions and publicly available data. Students will gain proficiency with Stata to do basic analyses of health-related data, including linear and logistic regression, and will become sophisticated consumers of health-related statistical results.
Terms: Win | Units: 4 | UG Reqs: GER:DB-Math, WAY-AQR | Grading: Letter (ABCD/NP)
Instructors: Kurina, L. (PI)

HUMBIO 89: Introduction to Health Sciences Statistics

This course aims to provide a firm grounding in the foundations of probability and statistics, with a focus on analyzing data from the health sciences. Students will learn how to read, interpret, and critically evaluate the statistics in medical and biological studies. The course also prepares students to be able to analyze their own data, guiding them on how to choose the correct statistical test, avoid common statistical pitfalls, and perform basic functions in R deducer. Cardinal Course certified by the Haas Center.
Terms: Aut, Win, Spr | Units: 3 | UG Reqs: GER:DB-Math, WAY-AQR | Grading: Letter or Credit/No Credit
Instructors: Sainani, K. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints