2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 10 of 131 results for: all courses

AA 100: Introduction to Aeronautics and Astronautics

The principles of fluid flow, flight, and propulsion; the creation of lift and drag, aerodynamic performance including takeoff, climb, range, and landing performance, structural concepts, propulsion systems, trajectories, and orbits. The history of aeronautics and astronautics. Prerequisites: MATH 20, 21 or MATH 41, 42; elementary physics.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

AA 116Q: Electric Automobiles and Aircraft

Transportation accounts for nearly one-third of American energy use and greenhouse gas emissions and three-quarters of American oil consumption. It has crucial impacts on climate change, air pollution, resource depletion, and national security. Students wishing to address these issues reconsider how we move, finding sustainable transportation solutions. An introduction to the issue, covering the past and present of transportation and its impacts; examining alternative fuel proposals; and digging deeper into the most promising option: battery electric vehicles. Energy requirements of air, ground, and maritime transportation; design of electric motors, power control systems, drive trains, and batteries; and technologies for generating renewable energy. Two opportunities for hands-on experiences with electric cars. Prerequisites: Introduction to calculus and Physics AP or elementary mechanics.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Enge, P. (PI)

AA 118N: How to Design a Space Mission: from Concept to Execution

Space exploration is truly fascinating. From the space race led by governments as an outgrowth of the Cold War to the new era of space commercialization led by private companies and startups, more than 50 years have passed, characterized by great leaps forward and discoveries. We will learn how space missions are designed, from concept to execution, based on the professional experience of the lecturer and numerous examples of spacecraft, including unique hardware demonstrations by startups of the Silicon Valley. We will study the essentials of systems engineering as applicable to a variety of mission types, for communication, navigation, science, commercial, and military applications. We will explore the various elements of a space mission, including the spacecraft, ground, and launch segments with their functionalities. Special emphasis will be given to the design cycle, to understand how spacecraft are born, from the stakeholders' needs, through analysis, synthesis, all the way to th more »
Space exploration is truly fascinating. From the space race led by governments as an outgrowth of the Cold War to the new era of space commercialization led by private companies and startups, more than 50 years have passed, characterized by great leaps forward and discoveries. We will learn how space missions are designed, from concept to execution, based on the professional experience of the lecturer and numerous examples of spacecraft, including unique hardware demonstrations by startups of the Silicon Valley. We will study the essentials of systems engineering as applicable to a variety of mission types, for communication, navigation, science, commercial, and military applications. We will explore the various elements of a space mission, including the spacecraft, ground, and launch segments with their functionalities. Special emphasis will be given to the design cycle, to understand how spacecraft are born, from the stakeholders' needs, through analysis, synthesis, all the way to their integration and validation. We will compare the current designs with those employed in the early days of the space age, and show the importance of economics in the development of spacecraft. Finally, we will brainstorm startup ideas and apply the concepts learned to a notional space mission design as a team.
Terms: Aut | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: D'Amico, S. (PI)

AA 119N: 3D Printed Aerospace Structures

The demand for rapid prototyping of lightweight, complex, and low-cost structures has led the aerospace industry to leverage three-dimensional (3D) printing as a manufacturing technology. For example, the manufacture of aircraft engine components, unmanned aerial vehicle (UAV) wings, CubeSat parts, and satellite sub-systems have recently been realized with 3D printing and other additive manufacturing techniques. In this freshman seminar, a survey of state-of-the-art 3D printing processes will be reviewed and the process-dependent properties of 3D-printed materials and structures will be analyzed in detail. In addition, the advantages and disadvantages of this manufacturing approach will be debated during class! To give students exposure to 3D printing systems in action, tours of actual 3D printing facilities on campus (Stanford's Product Realization Laboratory), as well as in Silicon Valley (e.g., Made in Space) will be conducted.
Terms: Aut | Units: 3 | UG Reqs: WAY-AQR | Grading: Letter (ABCD/NP)
Instructors: Senesky, D. (PI)

AA 120Q: Building Trust in Autonomy

Major advances in both hardware and software have accelerated the development of autonomous systems that have the potential to bring significant benefits to society. Google, Tesla, and a host of other companies are building autonomous vehicles that can improve safety and provide flexible mobility options for those who cannot drive themselves. On the aviation side, the past few years have seen the proliferation of unmanned aircraft that have the potential to deliver medicine and monitor agricultural crops autonomously. In the financial domain, a significant portion of stock trades are performed using automated trading algorithms at a frequency not possible by human traders. How do we build these systems that drive our cars, fly our planes, and invest our money? How do we develop trust in these systems? What is the societal impact on increased levels of autonomy?
Terms: Win | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)

AA 121Q: It IS Rocket Science!

It's an exciting time for space exploration. Companies like SpaceX and Blue Origin are launching rockets into space and bringing them back for reuse. NASA is developing the world's most powerful rocket. Startups are deploying constellations of hundreds of cubesats for communications, navigation, and earth monitoring. The human race has recently gotten a close look at Pluto, soft landed on a comet, and orbited two asteroids. The upcoming launch of the James Webb Space Telescope will allow astronomers to look closer to the beginning of time than ever before. The workings of space systems remain mysterious to most people, but in this seminar we'll pull back the curtain for a look at the basics of "rocket science." How does a SpaceX rocket get into space? How do Skybox satellites capture images for Google Earth? How did the New Horizons probe find its way to Pluto? How do we communicate with spacecraft that are so distant? We'll explore these topics and a range of others during the quarter. We'll cover just enough physics and math to determine where to look in the sky for a spacecraft, planet, or star. Then we'll check our math by going outside for an evening pizza party observing these objects in the night sky. We'll also visit a spacecraft production facility or Mission Operations Center to see theory put into practice.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Barrows, A. (PI)

AA 122N: Dawn of the Drones: How Will Unmanned Aerial Systems Change Our World?

Unmanned aerial systems (UASs) have exploded on the scene in recent years, igniting a national debate about how to use them, how to regulate them, and how to make them safe. This seminar will dive into the many engineering challenges behind the headlines: in the future, how will we engineer UASs ranging in size from simple RC toys to highly-sophisticated autonomous scientific and military data gathering systems? This seminar will examine the key elements required to conceive, implement, deploy, and operate state-of-the-art of drone systems: What variety of problems can they help us solve? How autonomous are they and how autonomous do they need to be? What are the key technical bottlenecks preventing widespread deployment? How are they different from commercial aircraft? What kinds of companies will serve the market for UAV-related products and services? What business models will be successful and why? We will emphasize aspects of design, autonomy, reliability, navigation, sensing, and more »
Unmanned aerial systems (UASs) have exploded on the scene in recent years, igniting a national debate about how to use them, how to regulate them, and how to make them safe. This seminar will dive into the many engineering challenges behind the headlines: in the future, how will we engineer UASs ranging in size from simple RC toys to highly-sophisticated autonomous scientific and military data gathering systems? This seminar will examine the key elements required to conceive, implement, deploy, and operate state-of-the-art of drone systems: What variety of problems can they help us solve? How autonomous are they and how autonomous do they need to be? What are the key technical bottlenecks preventing widespread deployment? How are they different from commercial aircraft? What kinds of companies will serve the market for UAV-related products and services? What business models will be successful and why? We will emphasize aspects of design, autonomy, reliability, navigation, sensing, and perception, as well as coordination/collaboration through a series of case studies drawn from our recent experience. Examples include imaging efforts to map the changing coral reefs in the South Pacific, using and controlling swarms of unmanned systems to perform search and rescue missions over large areas, and package delivery systems over large metropolitan areas. Hands-on experience with Stanford-developed UASs will be part of the seminar.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)

ANTHRO 130D: Spatial Approaches to Social Science (ANTHRO 230D, POLISCI 241S, URBANST 124)

This multidisciplinary course combines different approaches to how GIS and spatial tools can be applied in social science research. We take a collaborative, project oriented approach to bring together technical expertise and substantive applications from several social science disciplines. The course aims to integrate tools, methods, and current debates in social science research and will enable students to engage in critical spatial research and a multidisciplinary dialogue around geographic space.
Terms: not given this year | Units: 5 | UG Reqs: WAY-AQR, WAY-SI | Grading: Letter or Credit/No Credit

APPPHYS 85N: Understanding Biology with Numbers

Preference to freshmen. Developing understanding of biological phenomena via quantitative reasoning including framing questions, order of magnitude estimation, and ways of looking at data. Topics span from cellular processes to motion of animals to global carbon cycles.
Terms: Win | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 108: Essential Statistics for Human Biology (HUMBIO 85A)

Introduction to statistical concepts and methods that are essential to the study of questions in biology, environment, health and related areas. The course will teach and use the computer language R and Python (you learn both, choose one). Topics include distributions, probabilities, likelihood, linear models; illustrations will be based on recent research.
Terms: not given this year | Units: 4 | UG Reqs: WAY-AQR | Grading: Letter (ABCD/NP)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints