2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 10 of 41 results for: VPGE::Interdisciplinary ; Currently searching offered courses. You can also include unoffered courses

AFRICAST 235: Designing Research-Based Interventions to Solve Global Health Problems (AFRICAST 135, EDUC 135, EDUC 335, HRP 235, HUMBIO 26, MED 235)

The excitement around social innovation and entrepreneurship has spawned numerous startups focused on tackling world problems, particularly in the fields of education and health. The best social ventures are launched with careful consideration paid to research, design, and efficacy. This course offers students insights into understanding how to effectively develop, evaluate, and scale social ventures. Using TeachAIDS (an award-winning nonprofit educational technology social venture used in 78 countries) as a primary case study, students will be given an in-depth look into how the entity was founded and scaled globally. Guest speakers will include world-class experts and entrepreneurs in Philanthropy, Medicine, Communications, Education, and Technology. Open to both undergraduate and graduate students.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit

BIO 459: Frontiers in Interdisciplinary Biosciences (BIOC 459, BIOE 459, CHEM 459, CHEMENG 459, PSYCH 459)

Students register through their affiliated department; otherwise register for CHEMENG 459. For specialists and non-specialists. Sponsored by the Stanford BioX Program. Three seminars per quarter address scientific and technical themes related to interdisciplinary approaches in bioengineering, medicine, and the chemical, physical, and biological sciences. Leading investigators from Stanford and the world present breakthroughs and endeavors that cut across core disciplines. Pre-seminars introduce basic concepts and background for non-experts. Registered students attend all pre-seminars; others welcome. See http://biox.stanford.edu/courses/459.html. Recommended: basic mathematics, biology, chemistry, and physics.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Medical Satisfactory/No Credit

BIOC 459: Frontiers in Interdisciplinary Biosciences (BIO 459, BIOE 459, CHEM 459, CHEMENG 459, PSYCH 459)

Students register through their affiliated department; otherwise register for CHEMENG 459. For specialists and non-specialists. Sponsored by the Stanford BioX Program. Three seminars per quarter address scientific and technical themes related to interdisciplinary approaches in bioengineering, medicine, and the chemical, physical, and biological sciences. Leading investigators from Stanford and the world present breakthroughs and endeavors that cut across core disciplines. Pre-seminars introduce basic concepts and background for non-experts. Registered students attend all pre-seminars; others welcome. See http://biox.stanford.edu/courses/459.html. Recommended: basic mathematics, biology, chemistry, and physics.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Medical Satisfactory/No Credit

BIOE 273: Biodesign for Mobile Health (MED 273)

Health care is facing significant cross-industry challenges and opportunities created by a number of factors including: the increasing need for improved access to affordable, high-quality care; growing demand from consumers for greater control of their health and health data; the shift in focus from 'sick care' to prevention and health optimization; aging demographics and the increased burden of chronic conditions; and new emphasis on real-world, measurable health outcomes for individuals and populations. Moreover, the delivery of health information and services is no longer tied to traditional 'brick and mortar' hospitals and clinics: it has increasingly become "mobile," enabled by apps, sensors, wearables, and other mobile devices, as well as by the data that these technologies generate. This multifactorial transformation presents opportunities for innovation across the entire cycle of care, from wellness, to acute and chronic diseases, to care at the end of life. But how does one ap more »
Health care is facing significant cross-industry challenges and opportunities created by a number of factors including: the increasing need for improved access to affordable, high-quality care; growing demand from consumers for greater control of their health and health data; the shift in focus from 'sick care' to prevention and health optimization; aging demographics and the increased burden of chronic conditions; and new emphasis on real-world, measurable health outcomes for individuals and populations. Moreover, the delivery of health information and services is no longer tied to traditional 'brick and mortar' hospitals and clinics: it has increasingly become "mobile," enabled by apps, sensors, wearables, and other mobile devices, as well as by the data that these technologies generate. This multifactorial transformation presents opportunities for innovation across the entire cycle of care, from wellness, to acute and chronic diseases, to care at the end of life. But how does one approach innovation in mobile health to address these health care challenges while ensuring the greatest chance of success? At Stanford Biodesign, we believe that innovation is a process that can be learned, practiced, and perfected; and, it starts with a need. In Biodesign for Mobile Health, students will learn about mobile health and the Biodesign needs-driven innovation process from over 50 industry experts. Over the course of ten weeks, these speakers join the teaching team in a dynamic classroom environment that includes lectures, panel discussions, and breakout sessions. These experts represent startups, corporations, venture capital firms, accelerators, research labs, health organizations, and more. Student teams will take actual mobile health challenges and learn how to apply Biodesign innovation principles to research and evaluate needs, ideate solutions, and objectively assess them against key criteria for satisfying the needs. Teams take a hands-on approach with the support of need coaches and mentors. On the final day of class, teams present to a panel of mobile health experts and compete for project extension funding. Limited enrollment, by application only. Friday section will be used for team projects and for scheduled workshops.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit

BIOE 374A: Biodesign Innovation: Needs Finding and Concept Creation (ME 368A, MED 272A)

In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter 2018), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2018), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturer more »
In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter 2018), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2018), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are expected to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of more than 40 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Terms: Win | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

BIOE 374B: Biodesign Innovation: Concept Development and Implementation (ME 368B, MED 272B)

In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter 2018), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2018), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturer more »
In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter 2018), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2018), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are expected to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of more than 40 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Terms: Spr | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

BIOE 376: Startup Garage: Design

A hands-on, project-based course, in which teams identify and work with users, domain experts, and industry participants to identify an unmet customer need, design new products or services that meet that need, and develop business models to support the creation and launch of startup products or services. This course integrates methods from human-centered design, lean startup, and business model planning. Each team will conceive, design, build, and field-test critical aspects of both the product or service and the business model.
Terms: Aut | Units: 4 | Grading: Letter or Credit/No Credit

BIOE 377: Startup Garage: Testing and Launch

STRAMGT 356/ BIOE 376 teams that concluded at the end of fall quarter that their preliminary product or service and business model suggest a path to viability, may continue with STRAMGT 366/ BIOE 377 in winter quarter. Teams develop more elaborate versions of their product/service and business model, perform a series of experiments to test key hypotheses about their product and business model, and prepare and present an investor pitch for a seed round of financing to a panel of seasoned investors and entrepreneurs.
Terms: Win | Units: 4 | Grading: Letter or Credit/No Credit

BIOE 459: Frontiers in Interdisciplinary Biosciences (BIO 459, BIOC 459, CHEM 459, CHEMENG 459, PSYCH 459)

Students register through their affiliated department; otherwise register for CHEMENG 459. For specialists and non-specialists. Sponsored by the Stanford BioX Program. Three seminars per quarter address scientific and technical themes related to interdisciplinary approaches in bioengineering, medicine, and the chemical, physical, and biological sciences. Leading investigators from Stanford and the world present breakthroughs and endeavors that cut across core disciplines. Pre-seminars introduce basic concepts and background for non-experts. Registered students attend all pre-seminars; others welcome. See http://biox.stanford.edu/courses/459.html. Recommended: basic mathematics, biology, chemistry, and physics.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Medical Satisfactory/No Credit

CEE 227: Global Project Finance

Public and private sources of finance for large, complex, capital-intensive projects in developed and developing countries. Benefits and disadvantages, major participants, risk sharing, and challenges of project finance in emerging markets. Financial, economic, political, cultural, and technological elements that affect project structures, processes, and outcomes. Case studies. Limited enrollment.
Terms: Win | Units: 4 | Grading: Letter (ABCD/NP)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints