2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

101 - 110 of 164 results for: MS&E

MS&E 310: Linear Programming

Formulation of standard linear programming models. Theory of polyhedral convex sets, linear inequalities, alternative theorems, and duality. Variants of the simplex method and the state of art interior-point algorithms. Sensitivity analyses, economic interpretations, and primal-dual methods. Relaxations of harder optimization problems and recent convex conic linear programs. Applications include game equilibrium facility location. Prerequisite: MATH 113 or consent of instructor.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Ye, Y. (PI)

MS&E 311: Optimization

Applications, theories, and algorithms for finite-dimensional linear and nonlinear optimization problems with continuous variables. Elements of convex analysis, first- and second-order optimality conditions, sensitivity and duality. Algorithms for unconstrained optimization, and linearly and nonlinearly constrained problems. Modern applications in communication, game theory, auction, and economics. Prerequisites: MATH 113, 115, or equivalent.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 312: Advanced Methods in Numerical Optimization (CME 334)

Topics include interior-point methods, relaxation methods for nonlinear discrete optimization, sequential quadratic programming methods, optimal control and decomposition methods. Topic chosen in first class; different topics for individuals or groups possible. Individual or team projects. May be repeated for credit.
Terms: Aut | Units: 3 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: Murray, W. (PI)

MS&E 314: Linear and Conic Optimization with Applications (CME 336)

Linear, semidefinite, conic, and convex nonlinear optimization problems as generalizations of classical linear programming. Algorithms include the interior-point, barrier function, and cutting plane methods. Related convex analysis, including the separating hyperplane theorem, Farkas lemma, dual cones, optimality conditions, and conic inequalities. Complexity and/or computation efficiency analysis. Applications to combinatorial optimization, sensor network localization, support vector machine, and graph realization. Prerequisite: MS&E 211 or equivalent.
Terms: alternate years, given next year | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 315: Numerical Optimization (CME 304)

Solution of nonlinear equations; unconstrained optimization; linear programming; quadratic programming; global optimization; general linearly and nonlinearly constrained optimization. Theory and algorithms to solve these problems. Prerequisite: background in analysis and numerical linear algebra.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 316: Discrete Mathematics and Algorithms (CME 305)

Topics: Basic Algebraic Graph Theory, Matroids and Minimum Spanning Trees, Submodularity and Maximum Flow, NP-Hardness, Approximation Algorithms, Randomized Algorithms, The Probabilistic Method, and Spectral Sparsification using Effective Resistances. Topics will be illustrated with applications from Distributed Computing, Machine Learning, and large-scale Optimization. Prerequisites: CS 261 is highly recommended, although not required.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 317: Algorithms for Modern Data Models (CS 263)

We traditionally think of algorithms as running on data available in a single location, typically main memory. In many modern applications including web analytics, search and data mining, computational biology, finance, and scientific computing, the data is often too large to reside in a single location, is arriving incrementally over time, is noisy/uncertain, or all of the above. Paradigms such as map-reduce, streaming, sketching, Distributed Hash Tables, Bulk Synchronous Processing, and random walks have proved useful for these applications. This course will provide an introduction to the design and analysis of algorithms for these modern data models. Prerequisite: Algorithms at the level of CS 261.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 318: Large-Scale Numerical Optimization (CME 338)

The main algorithms and software for constrained optimization emphasizing the sparse-matrix methods needed for their implementation. Iterative methods for linear equations and least squares. The simplex method. Basis factorization and updates. Interior methods. The reduced-gradient method, augmented Lagrangian methods, and SQP methods. Prerequisites: Basic numerical linear algebra, including LU, QR, and SVD factorizations, and an interest in MATLAB, sparse-matrix methods, and gradient-based algorithms for constrained optimization. Recommended: MS&E 310, 311, 312, 314, or 315; CME 108, 200, 302, 304, 334, or 335.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)

MS&E 319: Approximation Algorithms

Combinatorial and mathematical programming techniques to derive approximation algorithms for NP-hard optimization problems. Prossible topics include: greedy algorithms for vertex/set cover; rounding LP relaxations of integer programs; primal-dual algorithms; semidefinite relaxations. May be repeated for credit. Prerequisites: 112 or CS 161.
Terms: Aut | Units: 3 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: Saberi, A. (PI)

MS&E 321: Stochastic Systems

Topics in stochastic processes, emphasizing applications. Markov chains in discrete and continuous time; Markov processes in general state space; Lyapunov functions; regenerative process theory; renewal theory; martingales, Brownian motion, and diffusion processes. Application to queueing theory, storage theory, reliability, and finance. Prerequisites: 221 or STATS 217; MATH 113, 115. (Glynn)
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Glynn, P. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints