ENGR 10: Introduction to Engineering Analysis
Integrated approach to the fundamental scientific principles that are the cornerstones of engineering analysis: conservation of mass, atomic species, charge, momentum, angular momentum, energy, production of entropy expressed in the form of balance equations on carefully defined systems, and incorporating simple physical models. Emphasis is on setting up analysis problems arising in engineering. Topics: simple analytical solutions, numerical solutions of linear algebraic equations, and laboratory experiences. Provides the foundation and tools for subsequent engineering courses. Prerequisite: AP Physics and AP Calculus or equivalent.
Terms: Win, Sum

Units: 4

UG Reqs: GER:DBEngrAppSci

Grading: Letter (ABCD/NP)
Instructors:
Cappelli, M. (PI)
ENGR 14: Intro to Solid Mechanics
Introduction to engineering analysis using the principles of engineering solid mechanics. Builds on the math and physical reasoning concepts in
Physics 41 to develop skills in evaluation of engineered systems across a variety of fields. Foundational ideas for more advanced solid mechanics courses such as ME80 or
CEE101A. Interactive lecture sessions focused on mathematical application of key concepts, with weekly complementary lab session on testing and designing systems that embody these concepts. Limited enrollment, subject to instructor approval.
Terms: Aut, Win, Spr

Units: 4

UG Reqs: GER:DBEngrAppSci

Grading: Letter (ABCD/NP)
ENGR 15: Dynamics
The application of Newton's Laws to solve 2D and 3D static and dynamic problems, particle and rigid body dynamics, freebody diagrams, and equations of motion, with application to mechanical, biomechanical, and aerospace systems. Computer numerical solution and dynamic response. Prerequisites: Calculus (differentiation and integration) such as
MATH 41; and
ENGR 14 (statics and strength) or a mechanics course in physics such as
PHYSICS 41.
Terms: Aut, Spr

Units: 4

UG Reqs: GER:DBEngrAppSci, WAYSMA

Grading: Letter (ABCD/NP)
Instructors:
Lew, A. (PI)
;
Mitiguy, P. (PI)
ENGR 20: Introduction to Chemical Engineering (CHEMENG 20)
Overview of chemical engineering through discussion and engineering analysis of physical and chemical processes. Topics: overall staged separations, material and energy balances, concepts of rate processes, energy and mass transport, and kinetics of chemical reactions. Applications of these concepts to areas of current technological importance: biotechnology, energy, production of chemicals, materials processing, and purification. Prerequisite:
CHEM 31.
Terms: Spr

Units: 3

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYSMA

Grading: Letter (ABCD/NP)
Instructors:
Khosla, C. (PI)
ENGR 25B: Biotechnology (CHEMENG 25B)
Biology and chemistry fundamentals, genetic engineering, cell culture, protein production, pharmaceuticals, genomics, viruses, gene therapy, evolution, immunology, antibodies, vaccines, transgenic animals, cloning, stem cells, intellectual property, governmental regulations, and ethics. Prerequisites:
CHEM 31 and
MATH 41 or equivalent courage.
Terms: Spr

Units: 3

UG Reqs: GER:DBEngrAppSci

Grading: Letter or Credit/No Credit
Instructors:
Wang, C. (PI)
ENGR 30: Engineering Thermodynamics
The basic principles of thermodynamics are introduced in this course. Concepts of energy and entropy from elementary considerations of the microscopic nature of matter are discussed. The principles are applied in thermodynamic analyses directed towards understanding the performances of engineering systems. Methods and problems cover socially responsible economic generation and utilization of energy in central power generation plants, solar systems, refrigeration devices, and automobile, jet and gasturbine engines.
Terms: Aut, Win, Spr, Sum

Units: 3

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYSMA

Grading: Letter (ABCD/NP)
ENGR 31: Chemical Principles with Application to Nanoscale Science and Technology
Preparation for engineering disciplines emphasizing modern technological applications of solid state chemistry. Topics include: crystallography; chemical kinetics and equilibria; thermodynamics of phase changes and reaction; quantum mechanics of chemical bonding, molecular orbital theory, and electronic band structure of crystals; and the materials science of basic electronic and photonic devices. Prerequisite: high school or college chemistry background in stoichiometry, periodicity, Lewis and VSEPR structures, dissolution/precipitation and acid/base reactions, gas laws, and phase behavior.
Terms: Aut

Units: 4

UG Reqs: GER: DBNatSci, WAYSMA

Grading: Letter or Credit/No Credit
Instructors:
McIntyre, P. (PI)
ENGR 40: Introductory Electronics
Overview of electronic circuits and applications. Electrical quantities and their measurement, including operation of the oscilloscope. Basic models of electronic components including resistors, capacitors, inductors, and the operational amplifier. Frequency response of linear circuits, including basic filters, using phasor analysis. Digital logic fundamentals, logic gates, and basic combinatorial logic blocks. Lab assignments. Enrollment limited to 200. Lab. Corequisite:
PHYSICS 43.
Terms: Aut, Spr

Units: 5

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYSMA

Grading: Letter (ABCD/NP)
Instructors:
Howe, R. (PI)
;
Wong, S. (PI)
ENGR 40A: Introductory Electronics
Abbreviated version of E40, for students not pursuing degree in Electrical Engineering. Instruction to be completed in the first seven weeks of the quarter. Overview of electronic circuits and applications. Electrical quantities and their measurement, including operation of the oscilloscope. Basic models of electronic components including resistors, capacitors, inductors, and the operational amplifier. Lab assignments. Enrollment limited to 200. Lab. Corequisite:
PHYSICS 43.
Terms: Aut, Spr

Units: 3

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYSMA

Grading: Letter (ABCD/NP)
Instructors:
Howe, R. (PI)
;
Wong, S. (PI)
ENGR 40C: Engineering Wireless Networks
A hands on introduction to the design and implementation of modern wireless networks. Via a quarter long project on programmable radios, students will learn the fundamentals of wireless channels, encoding and decoding information, modeling of errors and error recovery algorithms, and the engineering of packetswitched networks. These concepts will be used to illustrate general themes in EE and CS: the role of abstraction and modularity in engineering design, building reliable systems using imperfect components, understanding the limits imposed by energy and noise, choosing effective representations for information, and engineering tradeoffs in complex systems. Formerly
ENGR40N.
Terms: Spr

Units: 5

UG Reqs: WAYAQR, WAYFR

Grading: Letter (ABCD/NP)
Instructors:
Katti, S. (PI)
Filter Results: