2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

31 - 40 of 75 results for: CSI::health

HUMBIO 151R: Biology, Health and Big Data

We are living in the midst of a revolution in the accessibility and availability of biological and medical data. How can all this data be used to improve human health? In this course, students will look at case studies from diabetes and cancer research to learn how to access publicly available data ranging from gene or protein level datasets to information about clinical trials. Students will apply what they learn from the case studies to develop a research proposal and presentation on a biology-related topic of their choice. The class will have a small group workshop-type format. Students will gain skills in research methods including accessing, analyzing and presenting data. There will be exercises using the R programming language. Prior programming experience is not required. Prerequisites: HumBio 2A, 3A or equivalent.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Salmeen, A. (PI)

HUMBIO 154C: Cancer Epidemiology

Clinical epidemiological methods relevant to human research in cancer will be the focus. The concepts of risk; case control, cohort, and cross-sectional studies; clinical trials; bias; confounding; interaction; screening; and causal inference will be introduced and applied. Social, political, economic, and ethical controversies surrounding cancer screening, prevention, and research will be considered. Human Biology 154 courses can be taken separately or as a series. Prerequisite: Human Biology core or equivalent, or instructor consent.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR | Grading: Letter or Credit/No Credit

INDE 225: Popular and Clinical Nutrition: Food Facts, Fads, and Pharmacology

Designed for medical students and other health care professionals. Lunchtime lectures review the epidemiological and clinical research related to eating patterns and misconceptions of the public, the mechanisms of pharmacological effects of food, and related topics common to patient nutritional concerns. Topics include fad diets, the impact of dietary addiction, longevity associated with caloric restriction, toxins in foods and the action of phytonutirents. Epidemiological, clinical, and biochemical studies are reviewed in the discussion of these and other topics.
Terms: not given this year, last offered Spring 2017 | Units: 1 | Grading: Medical Satisfactory/No Credit

ME 206A: Design for Extreme Affordability

Design for Extreme Affordability (fondly called Extreme) is a two-quarter course offered by the d.school through the School of Engineering and the Graduate School of Business. This multidisciplinary project-based experience creates an enabling environment in which students learn to design products and services that will change the lives of the world's poorest citizens. Students work directly with course partners on real world problems, the culmination of which is actual implementation and real impact. Topics include design thinking, product and service design, rapid prototype engineering and testing, business modelling, social entrepreneurship, team dynamics, impact measurement, operations planning and ethics. Possibility to travel overseas during spring break. Previous projects include d.light, Driptech, Earthenable, Embrace, the Lotus Pump, MiracleBrace, Noora Health and Sanku. Periodic design reviews; Final course presentation and expo; industry and adviser interaction. Limited enrollment via application. Must sign up for ME206A and ME206B. See extreme.stanford.edu
Terms: Win | Units: 4 | Grading: Letter (ABCD/NP)

ME 206B: Design for Extreme Affordability

Design for Extreme Affordability (fondly called Extreme) is a two-quarter course offered by the d.school through the School of Engineering and the Graduate School of Business. This multidisciplinary project-based experience creates an enabling environment in which students learn to design products and services that will change the lives of the world's poorest citizens. Students work directly with course partners on real world problems, the culmination of which is actual implementation and real impact. Topics include design thinking, product and service design, rapid prototype engineering and testing, business modelling, social entrepreneurship, team dynamics, impact measurement, operations planning and ethics. Possibility to travel overseas during spring break. Previous projects include d.light, Driptech, Earthenable, Embrace, the Lotus Pump, MiracleBrace, Noora Health and Sanku. Periodic design reviews; Final course presentation and expo; industry and adviser interaction. Limited enrollment via application. Must sign up for ME206A and ME206B. See extreme.stanford.edu
Terms: Spr | Units: 4 | Grading: Letter (ABCD/NP)

ME 359: Designing for Safety in Labor and Delivery

Designing For Safety In Labor & Delivery will inform students about challenges in the L&D environment through direct observation in a simulated environment and the hospital. Simultaneously, we will be studying the users: their environment, standard protocols, communication and behavior. Our goal is to identify need spaces that will lead to product, system or service innovation and improve safety and quality of care. Student groups will have structured access to OB/GYN, pediatric and neonatology clinicians at Lucile Packard Children¿s Hospital, as well as parents for conducting ethnography. Field trips to Lucile Packard Children¿s Hospital and The Kaiser Garfield Healthcare Innovation Center are planned as well. Physical prototypes and/or scenarios can be tested and presented at CAPE¿s simulation lab in order to give students a realistic environment in which to evaluate and present their ideas. Prior design process experience is helpful but not a prerequisite. Collaboration with teammates is required and critical for student success. To be considered for admission, you must complete the application by 12/15/16 AND attend the first class. Admission by application. See dschool.stanford.edu/classes for more information.
Terms: not given this year, last offered Winter 2016 | Units: 3 | Grading: Letter (ABCD/NP)

ME 368B: Biodesign Innovation: Concept Development and Implementation (BIOE 374B, MED 272B)

In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter 2018), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2018), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturer more »
In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter 2018), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2018), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are expected to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of more than 40 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Terms: Spr | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

MED 157: Foundations for Community Health Engagement

Open to undergraduate, graduate, and MD students. Examination and exploration of community health principles and their application at the local level. Designed to prepare students to make substantive contributions in a variety of community health settings (e.g. clinics, government agencies, non-profit organization, advocacy groups). Topics include community health assessment; health disparities; health promotion and disease prevention; strategies for working with diverse, low-income, and underserved populations; and principles of ethical and effective community engagement.
Terms: Spr | Units: 3 | UG Reqs: WAY-ED, WAY-SI | Grading: Letter (ABCD/NP)

MED 200: The Medical Device Entrepreneur's Course Primer

This course provides students and entrepreneurs a solid understanding of the complex US regulatory framework governing medical devices, in vitro diagnostics and drug-device combination products. Through class lectures, research and team assignments, class participants learn the key regulatory, clinical and ethical issues in biomedical product innovation. Focuses specifically on US investigational and marketing submission types and preparation of submission outlines, key steps to develop a product that will meet US regulatory requirements and development of regulatory strategy for a novel product. While there are no technical prerequisites, the course projects are challenging, and thus are more suitable for graduate and advanced undergraduate students.
Terms: not given this year, last offered Spring 2016 | Units: 1 | Grading: Medical Satisfactory/No Credit

MED 200: Primary Care Presentations

This course is a lecture series offered during the winter quarter. The aim of this seminar is to allow medical students to experience the mindset of primary care physicians in real time. Classes feature presentations of patient cases submitted by Stanford faculty. Faculty presenters are provided with the diagnostic information for the cases in a sequential manner during and not in advance of each class, allowing students to learn from the thought process of physicians in real time as they put together the differential diagnosis, interpret diagnostic information, deliberate treatment and management options, and discuss other thoughts about the cases.
Terms: Win | Units: 1 | Grading: Medical Satisfactory/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints