CME 100: Vector Calculus for Engineers (ENGR 154)
Computation and visualization using MATLAB. Differential vector calculus: analytic geometry in space, functions of several variables, partial derivatives, gradient, unconstrained maxima and minima, Lagrange multipliers. Integral vector calculus: multiple integrals in Cartesian, cylindrical, and spherical coordinates, line integrals, scalar potential, surface integrals, Green's, divergence, and Stokes' theorems. Examples and applications drawn from various engineering fields. Prerequisites:
MATH 41 and 42, or 10 units AP credit.
Terms: Aut, Spr

Units: 5

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
CME 100A: Vector Calculus for Engineers, ACE
Students attend
CME100/ENGR154 lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Enrollment by department permission only. Prerequisite: application at:
http://soe.stanford.edu/current_students/edp/programs/ace.html
Terms: Aut, Spr

Units: 6

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
CME 102: Ordinary Differential Equations for Engineers (ENGR 155A)
Analytical and numerical methods for solving ordinary differential equations arising in engineering applications: Solution of initial and boundary value problems, series solutions, Laplace transforms, and nonlinear equations; numerical methods for solving ordinary differential equations, accuracy of numerical methods, linear stability theory, finite differences. Introduction to MATLAB programming as a basic tool kit for computations. Problems from various engineering fields. Prerequisite:
CME 100/
ENGR 154 or
MATH 51.
Terms: Win, Spr, Sum

Units: 5

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Le, H. (PI)
;
Moin, P. (PI)
CME 102A: Ordinary Differential Equations for Engineers, ACE
Students attend
CME102/ENGR155A lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Prerequisite: application at:
http://soe.stanford.edu/current_students/edp/programs/ace.html
Terms: Win, Spr

Units: 6

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Le, H. (PI)
;
Moin, P. (PI)
CME 104: Linear Algebra and Partial Differential Equations for Engineers (ENGR 155B)
Linear algebra: matrix operations, systems of algebraic equations, Gaussian elimination, undetermined and overdetermined systems, coupled systems of ordinary differential equations, eigensystem analysis, normal modes. Fourier series with applications, partial differential equations arising in science and engineering, analytical solutions of partial differential equations. Numerical methods for solution of partial differential equations: iterative techniques, stability and convergence, time advancement, implicit methods, von Neumann stability analysis. Examples and applications from various engineering fields. Prerequisite:
CME 102/
ENGR 155A.
Terms: Spr

Units: 5

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Khayms, V. (PI)
CME 104A: Linear Algebra and Partial Differential Equations for Engineers, ACE
Students attend
CME104/ENGR155B lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Prerequisite: application at:
http://soe.stanford.edu/current_students/edp/programs/ace.html
Terms: Spr

Units: 6

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Khayms, V. (PI)
CME 106: Introduction to Probability and Statistics for Engineers (ENGR 155C)
Probability: random variables, independence, and conditional probability; discrete and continuous distributions, moments, distributions of several random variables. Topics in mathematical statistics: random sampling, point estimation, confidence intervals, hypothesis testing, nonparametric tests, regression and correlation analyses; applications in engineering, industrial manufacturing, medicine, biology, and other fields. Prerequisite:
CME 100/ENGR154 or
MATH 51.
Terms: Win, Sum

Units: 34

UG Reqs: GER:DBMath, WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Khayms, V. (PI)
CME 108: Introduction to Scientific Computing (MATH 114)
Introduction to Scientific Computing Numerical computation for mathematical, computational, physical sciences and engineering: error analysis, floatingpoint arithmetic, nonlinear equations, numerical solution of systems of algebraic equations, banded matrices, least squares, unconstrained optimization, polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations, truncation error, numerical stability for time dependent problems and stiffness.nImplementation of numerical methods in MATLAB programming assignments.nPrerequisites:
MATH 51, 52, 53; prior programming experience (MATLAB or other language at level of
CS 106A or higher).
Terms: Win, Sum

Units: 34

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Navalpakkam Srinivasan Acharya, S. (PI)
;
Sing Long Collao, C. (PI)
CME 194: Introduction to MPI
This short course runs for the first four weeks of the quarter. Recommended for students interested in writing parallel programs. Focus is on distributed memory programming via the Message Passing Interface (MPI). Topics include: parallel decomposition, basic communication primitives, collective operations, and debugging. Interactive lectures and homework assignments require writing software. Students should be comfortable and interested in writing software in C/C++ but no prior parallel programming experience is required.
Terms: Spr

Units: 1

Grading: Satisfactory/No Credit
Instructors:
Lewis, R. (PI)
CME 204: Partial Differential Equations in Engineering (ME 300B)
Geometric interpretation of partial differential equation (PDE) characteristics; solution of first order PDEs and classification of secondorder PDEs; selfsimilarity; separation of variables as applied to parabolic, hyperbolic, and elliptic PDEs; special functions; eigenfunction expansions; the method of characteristics. If time permits, Fourier integrals and transforms, Laplace transforms. Prerequisite:
CME 200/
ME 300A, equivalent, or consent of instructor.
Terms: Win

Units: 3

Grading: Letter or Credit/No Credit
Instructors:
Lele, S. (PI)
Filter Results: