2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 4 of 4 results for: BIO42

BIO 42: Cell Biology and Animal Physiology

Cell structure and function; principles of animal physiology (immunology, renal, cardiovascular, sensory, motor physiology, and endocrinology); neurobiology from cellular basis to neural regulation of physiology. Prerequisites: CHEM 31X (or 31A,B), 33. Recommended: BIO 41; CHEM 35; MATH 19, 20, 21 or 41, 42.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 156: Epigenetics (BIO 256)

Epigenetics is the process by which phenotypes not determined by the DNA sequence are stably inherited in successive cell divisions. Course will cover the molecular mechanisms governing epigenetics, ranging from the discovery of epigenetic phenomena to present-day studies on the role of chromatin, DNA methylation, and RNA in regulating epigenetics processes. Topics include: position effect gene expression, genome regulation, gene silencing & heterochromatin, histone code, DNA methylation & imprinting, epigenetics & disease, and epigenetic-based therapeutics. Prerequisite: BIO41 and BIO42 or consent of instructor.
Terms: Spr | Units: 2 | Grading: Letter or Credit/No Credit
Instructors: Gozani, O. (PI)

BIO 256: Epigenetics (BIO 156)

Epigenetics is the process by which phenotypes not determined by the DNA sequence are stably inherited in successive cell divisions. Course will cover the molecular mechanisms governing epigenetics, ranging from the discovery of epigenetic phenomena to present-day studies on the role of chromatin, DNA methylation, and RNA in regulating epigenetics processes. Topics include: position effect gene expression, genome regulation, gene silencing & heterochromatin, histone code, DNA methylation & imprinting, epigenetics & disease, and epigenetic-based therapeutics. Prerequisite: BIO41 and BIO42 or consent of instructor.
Terms: Spr | Units: 2 | Grading: Letter or Credit/No Credit
Instructors: Gozani, O. (PI)

BIOE 244: Advanced Frameworks and Approaches for Engineering Integrated Genetic Systems

Concepts and techniques for the design and implementation of engineered genetic systems. Topics covered include the quantitative exploration of tools that support (a) molecular component engineering, (b) abstraction and composition of functional genetic devices, (c) use of control and dynamical systems theory in device and systems design, (d) treatment of molecular "noise", (e) integration of DNA-encoded programs within cellular chassis, (f) designing for evolution, and (g) the use of standards in measurement, genetic layout architecture, and data exchange. Prerequisites: CME104, CME106, CHEM 33, BIO41, BIO42, BIOE41, BIOE42, and BIOE44 (or equivalents), or permission of the instructors.
Terms: Aut | Units: 4 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints