2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

101 - 103 of 103 results for: all courses

STATS 167: Probability: Ten Great Ideas About Chance (PHIL 166, PHIL 266, STATS 267)

Foundational approaches to thinking about chance in matters such as gambling, the law, and everyday affairs. Topics include: chance and decisions; the mathematics of chance; frequencies, symmetry, and chance; Bayes great idea; chance and psychology; misuses of chance; and harnessing chance. Emphasis is on the philosophical underpinnings and problems. Prerequisite: exposure to probability or a first course in statistics at the level of STATS 60 or 116.
Terms: not given this year | Units: 4 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit

SYMSYS 1: Minds and Machines (LINGUIST 35, PHIL 99, PSYCH 35)

(Formerly SYMSYS 100). An overview of the interdisciplinary study of cognition, information, communication, and language, with an emphasis on foundational issues: What are minds? What is computation? What are rationality and intelligence? Can we predict human behavior? Can computers be truly intelligent? How do people and technology interact, and how might they do so in the future? Lectures focus on how the methods of philosophy, mathematics, empirical research, and computational modeling are used to study minds and machines. Undergraduates considering a major in symbolic systems should take this course as early as possible in their program of study.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-SocSci, WAY-FR | Grading: Letter or Credit/No Credit

THINK 3: Breaking Codes, Finding Patterns

Why are humans drawn to making and breaking codes? To what extent is finding patterns both an art and a science? Cryptography has been used for millennia for secure communications, and its counterpart, cryptanalysis, or code breaking, has been around for just slightly less time. In this course we will explore the history of cryptography and cryptanalysis including the Enigma code, Navajo windtalkers, early computer science and the invention of modern Bayesian inference. We will try our own hand at breaking codes using some basic statistical tools for which no prior experience is necessary. Finally, we will consider the topic of patterns more generally, raising such questions as why we impute meaning to patterns, such as Biblical codes, and why we assume a complexity within a pattern when it's not there, such as the coincidence of birthdays in a group.
Terms: not given this year | Units: 4 | UG Reqs: THINK, WAY-AQR, WAY-FR | Grading: Letter (ABCD/NP)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints