2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

151 - 160 of 192 results for: all courses

ME 21N: Renaissance Machine Design

Preference to freshmen. Technological innovations of the 1400s that accompanied the proliferation of monumental art and architecture by Brunelleschi, da Vinci, and others who designed machines and invented novel construction, fresco, and bronze-casting techniques. The social and political climate, from the perspective of a machine designer, that made possible and demanded engineering expertise from prominent artists. Hands-on projectsto provide a physical understanding of Renaissance-era engineering challenges and introduce the pleasure of creative engineering design. Technical background not required.
| UG Reqs: GER:DB-EngrAppSci

ME 70: Introductory Fluids Engineering

Elements of fluid mechanics as applied to engineering problems. Equations of motion for incompressible ideal flow. Hydrostatics. Control volume laws for mass, momentum, and energy. Bernoulli equation. Dimensional analysis and similarity. Flow in ducts. Boundary layer flows. Lift and drag. Lab experiment demonstrations. Prerequisites: ENGR 14 and 30.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 80: Mechanics of Materials

Mechanics of materials and deformation of structural members. Topics include stress and deformation analysis under axial loading, torsion and bending, column buckling and pressure vessels. Introduction to stress transformation and multiaxial loading. Prerequisite: ENGR 14.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 101: Visual Thinking

Lecture/lab. Visual thinking and language skills are developed and exercised in the context of solving design problems. Exercises for the mind's eye. Rapid visualization and prototyping with emphasis on fluent and flexible idea production. The relationship between visual thinking and the creative process. Enrollment limited to 60.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: WAY-CE, GER:DB-EngrAppSci

ME 10N: Form and Function of Animal Skeletons (BIOE 10N)

Preference to freshmen. The biomechanics and mechanobiology of the musculoskeletal system in human beings and other vertebrates on the level of the whole organism, organ systems, tissues, and cell biology. Field trips to labs.
| UG Reqs: GER:DB-EngrAppSci

ME 112: Mechanical Systems Design

Lecture/lab. Characteristics of machine elements including gears, bearings, and shafts. Design for fatigue life. Electric motor fundamentals. Transmission design for maximizing output power or efficiency. Mechanism types, linkage analysis and kinematic synthesis. Team-based design projects emphasizing the balance of physical with virtual prototyping based on engineering analysis. Lab for dissection of mechanical systems and project design reviews. Prerequisites: 80, 101. Recommended: 203, ENGR 15.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Cutkosky, M. (PI)

ME 113: Mechanical Engineering Design

Capstone course. Mechanical engineering design is experienced by students as they work on team projects obtained from industry or other organizations. Prerequisites: 80,101,112, 203. Enrollment limited to ME majors.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Nelson, D. (PI)

ME 115B: Product Design Methods

Problem-finding, problem-solving, intermediate creativity methods and effective techniques for researching and presenting product concepts. Individual- and team-based design projects emphasizing advanced visual thinking and prototyping skills. Prerequisite: ME115A
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Edson, J. (PI)

ME 131A: Heat Transfer

The principles of heat transfer by conduction, convection, and radiation with examples from the engineering of practical devices and systems. Topics include transient and steady conduction, conduction by extended surfaces, boundary layer theory for forced and natural convection, boiling, heat exchangers, and graybody radiative exchange. Prerequisites: 70, ENGR 30. Recommended: intermediate calculus, ordinary differential equations.
Terms: Aut | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci
Instructors: Eaton, J. (PI)

ME 131B: Fluid Mechanics: Compressible Flow and Turbomachinery

Engineering applications involving compressible flow: aircraft and rocket propulsion, power generation; application of mass, momentum, energy and entropy balance to compressible flows; variable area isentropic flow, normal shock waves, adiabatic flow with friction, flow with heat addition. Operation of flow systems: the propulsion system. Turbomachinery: pumps, compressors, turbines. Angular momentum analysis of turbomachine performance, centrifugal and axial flow machines, effect of blade geometry, dimensionless performance of turbomachines; hydraulic turbines; steam turbines; wind turbines. Compressible flow turbomachinery: the aircraft engine. Prerequisites: 70, ENGR 30.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Eaton, J. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints