2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 291 results for: ME

ME 115B: Product Design Methods

Problem-finding, problem-solving, intermediate creativity methods and effective techniques for researching and presenting product concepts. Individual- and team-based design projects emphasizing advanced visual thinking and prototyping skills. Prerequisite: ME115A
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci

ME 115C: Design and Business Factors

Design and Business Factors: Introduces business concepts critical to determining the success of new products and services. Students will learn to estimate the cost of R&D for new product development. Using financial analysis, ROI, and tollgates to reduce development risk will be explored using case studies and simulations. Students will develop a bill of materials and a profit and loss statement for a sample product concept, prototype a design consultancy, and create a business proposal for a proposed new product company.
Terms: Spr | Units: 3

ME 116M: Introduction to the Design of Smart Products

This course will focus on the technical mechatronic skills as well as the human factors and interaction design considerations required for the design of smart products and devices. Students will learn techniques for rapid prototyping of smart devices, best practices for physical interaction design, fundamentals of affordances and signifiers, and interaction across networked devices. Students will be introduced to design guidelines for integrating electrical components such as PCBs into mechanical assemblies and consider the physical form of devices, not just as enclosures but also as a central component of the smart product. Prerequisites include: CS106A, E40, and ME 210, or instructor approval.
Terms: Spr | Units: 4

ME 131A: Heat Transfer

The principles of heat transfer by conduction, convection, and radiation with examples from the engineering of practical devices and systems. Topics include transient and steady conduction, conduction by extended surfaces, boundary layer theory for forced and natural convection, boiling, heat exchangers, and graybody radiative exchange. Prerequisites: 70, ENGR 30. Recommended: intermediate calculus, ordinary differential equations.
Terms: Aut, Win | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci

ME 131B: Fluid Mechanics: Compressible Flow and Turbomachinery

Engineering applications involving compressible flow: aircraft and rocket propulsion, power generation; application of mass, momentum, energy and entropy balance to compressible flows; variable area isentropic flow, normal shock waves, adiabatic flow with friction, flow with heat addition. Operation of flow systems: the propulsion system. Turbomachinery: pumps, compressors, turbines. Angular momentum analysis of turbomachine performance, centrifugal and axial flow machines, effect of blade geometry, dimensionless performance of turbomachines; hydraulic turbines; steam turbines; wind turbines. Compressible flow turbomachinery: the aircraft engine. Prerequisites: 70, ENGR 30.
Terms: Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 136: COMPRES FLUIDS

ME 137: 3D Printing for Non-Technical Innovators (ME 237)

3D Printing is a method of creation that requires only some basic computer skills and a few rules of thumb. This class will allow students to discover for themselves the potential and limitations of 3D Printing through a build intensive design project. This course is an excellent option for anyone who ever wanted to prototype an invention, create a work of art, customize a product or just make something cool -- and yet lacked the skills or a fully equipped workshop. Students may enroll for 1 unit to attend the lectures or 3 units for the complete project course. No prior technical knowledge needed.nNote: Course material is targeted toward non-ME Design and non-PD majors. An application is required for the 3-unit course option. Please complete the online application by Friday, March 25th. The application is available on the course website: web.stanford.edu/class/me137
Terms: Spr | Units: 1-3

ME 139: Educating Young STEM Thinkers (EDUC 139, EDUC 239, ME 231)

The course introduces students to the design thinking process, the national conversations about the future of STEM careers, and opportunities to work with middle school students and K-12 teachers in STEM-based after-school activities and intercession camps. The course is both theory and practice focused. The purpose is twofold; to provide reflection and mentoring opportunities for students to learn about pathways to STEM careers and to introduce mentoring opportunities with young STEM thinkers.
Terms: Win, Spr | Units: 3-5 | Repeatable 4 times (up to 20 units total)

ME 140: Advanced Thermal Systems

Capstone course. Thermal analysis and engineering emphasizing integrating heat transfer, fluid mechanics, and thermodynamics into a unified approach to treating complex systems. Mixtures, humidity, chemical and phase equilibrium, and availability. Labs apply principles through hands-on experience with a turbojet engine, PEM fuel cell, and hybrid solid/oxygen rocket motor. Use of MATLAB as a computational tool. Prerequisites: ENGR 30, ME 70, and 131A,B.
Terms: Spr | Units: 5 | UG Reqs: GER:DB-EngrAppSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints