2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 233 results for: all courses

BIOC 118Q: Genomics and Medicine

Preference to sophomores. Knowledge gained from sequencing human genomes and implications for medicine and biomedical research. Novel diagnoses and treatment of diseases, including stem cells, gene therapy and rational drug design. Personal genomics and how it is used to improve health and well being. Social and ethical implications of genetic information such as privacy, discrimination and insurability. Course Webpage: http://biochem118.stanford.edu/.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Brutlag, D. (PI)

BIOC 158: Genomics, Bioinformatics and Medicine (BIOC 258, BIOMEDIN 258, HUMBIO 158G)

Molecular basis of inherited human disease. Diagnostics approaches: simple Mendelian diseases and complex, multifactorial diseases. Genomics: functional genomics, epigenetics, gene expression, SNPs, copy number and other structural genomic variations involved in disease. Novel therapeutic methods: stem cell therapy, gene therapy and drug developments that depend on the knowledge of genomics. Personal genomics, pharmacogenomics, clinical genomics and their role in the future of preventive medicine. Prerequisites: BIO 41 or HUMBIO 2A or consent of instructor. Those with credit in BIOC 118 not eligible to enroll. Course webpage: http://biochem158.stanford.edu/
Terms: Aut, Win, Spr | Units: 3 | UG Reqs: WAY-SMA, GER: DB-NatSci | Repeatable 2 times (up to 6 units total)
Instructors: Brutlag, D. (PI)

BIOE 41: Physical Biology of Macromolecules

Principles of statistical physics, thermodynamics, and kinetics with applications to molecular biology. Topics include entropy, temperature, chemical forces, enzyme kinetics, free energy and its uses, self assembly, cooperative transitions in macromolecules, molecular machines, feedback, and accurate replication. Prerequisites: MATH 41, 42; CHEM 31A, B (or 31X); strongly recommended: PHYSICS 41, CME 100 or MATH 51, and CME 106; or instructor approval.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

BIOE 42: Physical Biology of Cells

Principles of transport, continuum mechanics, and fluids, with applications to cell biology. Topics include random walks, diffusion, Langevin dynamics, transport theory, low Reynolds number flow, and beam theory, with applications including quantitative models of protein trafficking in the cell, mechanics of the cell cytoskeleton, the effects of molecular noise in development, the electromagnetics of nerve impulses, and an introduction to cardiovascular fluid flow. Prerequisites: MATH 41, 42; CHEM 31A, B (or 31X); strongly recommended: CS 106A, PHYSICS 41, CME 100 or MATH 51, and CME 106; or instructor approval. 4 units, Spr (Huang, K)
Terms: Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

BIOE 44: Fundamentals for Engineering Biology Lab

Introduction to next-generation techniques in genetic, molecular, biochemical, and cellular engineering. Lab modules build upon current research including: gene and genome engineering via decoupled design and construction of genetic material; component engineering focusing on molecular design and quantitative analysis of experiments; device and system engineering using abstracted genetically encoded objects; and product development based on useful applications of biological technologies.
Terms: Aut, Spr | Units: 4 | UG Reqs: WAY-SMA

BIOE 103: Systems Physiology and Design

Physiological design principles of intact tissues, organs, organ systems, and organisms in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, ion channels and gradients, nonlinear dynamics of cell physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation and treatment planning, instrumentation for intervention and stimulation, instrumentation for diagnosis and prevention), and new technologies including tissue engineering and optogenetics. Analytic and conceptual problem solving with cases from primary literature and real-world applications. Prerequisites: MATH 41, 42; CME 102; PHY 41, 43; BIO 41, 42; or instructor approval.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA, WAY-AQR

BIOE 123: Optics and Devices Lab

This course provides a hands-on introduction to designing, and building devices for controlling experiments in the field of bioengineering. This course focuses on the tools and concepts related to optics and electronics, but also touches on other valuable techniques such as rapid prototyping and micro-fluidics. The first part of the course consists of guided modules, while the second half of the course is project based where students design and develop their own biotic game. Prerequisites: BIOE 41 and Matlab recommended.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA

BIOHOPK 44Y: Core Laboratory in Plant Biology, Ecology and Evolution

Laboratory and field projects provide working familiarity with the concepts, organisms, and techniques of plant and evolutionary biology, and ecology. Emphasis is on hands-on experimentation in the marine environment, analysis of data, and written and oral presentation of the experiments. Equivalent to BIO 44Y. Corequisite: BIOHOPK 43. Satisfies WIM in Biology.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIOHOPK 150H: Ecological Mechanics (BIOHOPK 250H)

(Graduate students register for 250H.) The principles of life¿s physical interactions. We will explore basic physics and fluid dynamics to see how these physical principles can be used to investigate ecology at levels from the individual to the community. Beginning with a review of basic physics we will investigate: response functions, diffusion, basic fluid dynamics, boundary layers, fluid-dynamic forces, and locomotion. In each case, we will learn the physics and engineering in the context of ecology. Some familiarity with basic physics and calculus advantageous, but not necessary.
Terms: Win | Units: 2 | UG Reqs: WAY-SMA
Instructors: Denny, M. (PI)

BIOHOPK 161H: Invertebrate Zoology (BIOHOPK 261H)

(Graduate students register for 261H.) Survey of invertebrate diversity emphasizing form and function in a phylogenetic framework. Morphological diversity, life histories, physiology, and ecology of the major invertebrate groups, concentrating on local marine forms as examples. Current views on the phylogenetic relationships and evolution of the invertebrates. Lectures, lab, plus field trips. Satisfies Central Menu Area 3 for Bio majors. Prerequisite: Biology core or consent of instructor.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Watanabe, J. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints