2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
by subject...

41 - 50 of 89 results for: CS ; Currently searching autumn courses. You can expand your search to include all quarters

CS 202: Law for Computer Science Professionals

Intellectual property law as it relates to computer science including copyright registration, patents, and trade secrets; contract issues such as non-disclosure/non-compete agreements, license agreements, and works-made-for-hire; dispute resolution; and principles of business formation and ownership. Emphasis is on topics of current interest such as open source and the free software movement, peer-to-peer sharing, encryption, data mining, and spam.
Terms: Aut | Units: 1 | Grading: Satisfactory/No Credit
Instructors: Hansen, D. (PI)

CS 206: Exploring Computational Journalism (COMM 281)

This course will explore the evolving field of computational journalism. Students will research and discuss the state of the field, and do projects in areas such as understanding the media ecosystem, stimulating media creation, and assessing media impact. Admission by application; please email James Hamilton at jayth@stanford.edu to request application.
Terms: Aut | Units: 3 | Grading: Letter (ABCD/NP)

CS 208E: Great Ideas in Computer Science

Great Ideas in Computer Science Covers the intellectual tradition of computer science emphasizing ideas that reflect the most important milestones in the history of the discipline. Topics include programming and problem solving; implementing computation in hardware; algorithmic efficiency; the theoretical limits of computation; cryptography and security; computer networks; machine learning; and the philosophy behind artificial intelligence. Readings will include classic papers along with additional explanatory material. Enrollment limited to students in the Master's program in Computer Science Education.
Terms: Aut | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Gregg, C. (PI)

CS 221: Artificial Intelligence: Principles and Techniques

Artificial intelligence (AI) has had a huge impact in many areas, including medical diagnosis, speech recognition, robotics, web search, advertising, and scheduling. This course focuses on the foundational concepts that drive these applications. In short, AI is the mathematics of making good decisions given incomplete information (hence the need for probability) and limited computation (hence the need for algorithms). Specific topics include search, constraint satisfaction, game playing, Markov decision processes, graphical models, machine learning, and logic. Prerequisites: CS 103 or CS 103B/X, CS 106B or CS 106X, CS 107, and CS 109 (algorithms, probability, and programming experience).
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit

CS 224W: Analysis of Networks

Networks are a fundamental tool for modeling complex social, technological, and biological systems. Coupled with emergence of online social networks and large-scale data availability in biological sciences, this course focuses on the analysis of massive networks which provide many computational, algorithmic, and modeling challenges. This course develops computational tools that reveal how the social, technological, and natural worlds are connected, and how the study of networks sheds light on these connections. nTopics include: how information spreads through society; robustness and fragility of food webs and financial markets; algorithms for the World Wide Web; friend prediction in online social networks; identification of functional modules in biological networks; disease outbreak detection.
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Leskovec, J. (PI)

CS 229: Machine Learning (STATS 229)

Topics: statistical pattern recognition, linear and non-linear regression, non-parametric methods, exponential family, GLMs, support vector machines, kernel methods, model/feature selection, learning theory, VC dimension, clustering, density estimation, EM, dimensionality reduction, ICA, PCA, reinforcement learning and adaptive control, Markov decision processes, approximate dynamic programming, and policy search. Prerequisites: linear algebra, and basic probability and statistics.
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit

CS 230: Deep Learning

Deep Learning is one of the most highly sought after skills in AI. We will help you become good at Deep Learning. In this course, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. nAI is transforming multiple industries. After this course, you will likely find creative ways to apply it to your work. This class is taught in the flipped-classroom format. You will watch videos and complete in-depth programming assignments and online quizzes at home, then come in to class for advanced discussions and work on projects.nThis class will culminate in an open-ended final project, which the teaching team will help you on. nnPrerequisites: Familiarity with programming in Python and Linear Algebra (matrix / vector multiplications). CS 229 may be taken concurrently.
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit

CS 238: Decision Making under Uncertainty (AA 228)

This course is designed to increase awareness and appreciation for why uncertainty matters, particularly for aerospace applications. Introduces decision making under uncertainty from a computational perspective and provides an overview of the necessary tools for building autonomous and decision-support systems. Following an introduction to probabilistic models and decision theory, the course will cover computational methods for solving decision problems with stochastic dynamics, model uncertainty, and imperfect state information. Topics include: Bayesian networks, influence diagrams, dynamic programming, reinforcement learning, and partially observable Markov decision processes. Applications cover: air traffic control, aviation surveillance systems, autonomous vehicles, and robotic planetary exploration. Prerequisites: basic probability and fluency in a high-level programming language.
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit

CS 241: Embedded Systems Workshop (EE 285)

Project-centric building hardware and software for embedded computing systems. Students work on an existing project of their own or join one of these projects. Syllabus topics will be determined by the needs of the enrolled students and projects. Examples of topics include: interrupts and concurrent programming, deterministic timing and synchronization, state-based programming models, filters, frequency response, and high-frequency signals, low power operation, system and PCB design, security, and networked communication. Prerequisite: CS107 (or equivalent).
Terms: Aut | Units: 2 | Repeatable for credit | Grading: Letter or Credit/No Credit

CS 242: Programming Languages

Central concepts in modern programming languages, impact on software development, language design trade-offs, and implementation considerations. Functional, imperative, and object-oriented paradigms. Formal semantic methods and program analysis. Modern type systems, higher order functions and closures, exceptions and continuations. Modularity, object-oriented languages, and concurrency. Runtime support for language features, interoperability, and security issues. Prerequisite: 107, or experience with Lisp, C, and an object-oriented language.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Crichton, W. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints