2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

51 - 60 of 64 results for: BIOS

BIOS 251: Biotechnology in the Natural World (SBIO 251)

Life can be found in some of the strangest and most inhospitable places of Earth. Whether in hot springs, oceanic depths, or dense rainforests, living organisms must be natural specialists to survive. This course explores a selection of strange and ingenious biomolecules that natural organisms have evolved in order to survive. Lectures will cover historical background as well as detailed investigations of the structure and function of selected biomolecules of interest. The majority of each lecture and discussion will focus on the adaptation of those molecules for fundamental and innovative approaches in modern biotechnology, especially in medicine and biophotonics. Key biophysical and biochemical techniques will be discussed as they are encountered within primary literature.
Terms: Win | Units: 1

BIOS 252: Experimental strategies for understanding plant-environmental responses

This minicourse will explore the specific aspects of the environment that plants sense, the impacts these stimuli have on plant physiology and the state-of-the-art in experimental methods used to study plant-environmental interactions. Each week will include a lecture, group discussion and lab focused on one of three key environments: the soil, canopy and agricultural field. Lectures will provide necessary background information, literature-based discussions will evaluate current methods and identify areas where innovation is needed, and labs will include demonstrations of several common methods and a trip to the Salinas Valley to visit a farm.
Terms: Win | Units: 1
Instructors: Dinneny, J. (PI)

BIOS 253: Discovery and Innovation in Emerging Viral Infections

An interdisciplinary mini course focused on challenges posed by emerging viruses and innovative efforts to overcome them. Modules include epidemiology and ecology of emerging viral infections, such as Ebola, dengue, and Zika, discovery of new emerging viruses, development and application of molecular assays for the diagnosis and management of emerging viral infections, bioinformatics and genetic approaches for antiviral target discovery, and novel therapeutic approaches for combating emerging viruses. It is intended for graduate students and postdoctoral fellows interested in emerging viral infections. Advanced undergraduates are also welcome. Prerequisite: background in molecular biology.
Terms: Win, Spr | Units: 1
Instructors: Einav, S. (PI)

BIOS 254: DataLucence::Images

Increasingly, research in the biosciences involves data in digital formats and scientists spend a significant fraction of their time building and using software to harvest insight from digital data. A central goal of this course is to expose students to concepts adopted from computer science and data science regarding data management, data curation, and analytical workflows for analyzing digital data. We will focus on digital images since this image type is used in diverse sub-fields in the biosciences. The course will consist of a two-day workshop/lab¿SoftwareCarpentry¿and six DataLucence::Images+Hackathon class meetings.
Terms: Spr | Units: 2
Instructors: Goodman, M. (PI)

BIOS 255: Promises and Pitfalls: A Critical Evaluation of Neuroscience Techniques

The complexity of modern neuroscience requires researchers to develop an interdisciplinary approach. This course explores multiple technologies for understanding the brain and is less a survey of different techniques than a critical comparison of them. With the goal of incorporating a new technique into their own research projects, students will address potential advantages, disadvantages and limitations of various methods. The final two class meetings will be devoted to allowing students to develop a plan to integrate a new technique into their current research projects and receive feedback from the class on how informative and viable their plans may be.
Terms: Win | Units: 1

BIOS 256: SCULPTURAL DATA ILLUSTRATIONS

Students will use learn make and print 3D models of their data to use as a focal point when describing their project. We will teach the students how to use Autocad and Blender to process existing data sets and students are encouraged to bring their own data. We strive to make wearable models to enable instant mini-lectures any place and anytime.
Terms: Win | Units: 1

BIOS 257: HIV: The virus, the disease, the research

Medical students, graduate students in biological sciences, undergraduate students with strong biological background. Topics: Immunopathogenesis, immune deficits, opportunistic infections including TB, and malignancies; Genomics viral genetic analyses that have traced the origin of HIV-1 and HIV-2 to primates, dated the spread of infection in humans, and characterized theevolution of virus within infected individuals; Antiretroviral drug development identification of drug targets, structure-based drug design, overcoming drug resistance; Challenges of vaccine development; Public health strategies
Terms: Spr | Units: 1
Instructors: Shafer, R. (PI)

BIOS 258: Ethics, Science, and Society

This discussion focused Ethics, Science, and Society interactive mini course will engage Biosciences graduate students and faculty in learning and conversations on topics in responsible research (including animal subjects, authorship, collaboration, conflicts of interest, data management, human subjects, mentor-mentee relationships, peer review, publication, research misconduct, and social responsibility) and diversity in science, informed by readings, case studies, individual reflections, and more. Some of the driving themes in this course include: what it means to do research well and how to and not to achieve this, why doing research well and with integrity is important, and who are researchers currently and who should they be.
Terms: Win, Sum | Units: 1

BIOS 259: Statistical Genetics of Complex Traits

This course provides an overview of statistical methods for analyzing human genetic variation and for understanding the genetic basis of complex traits. Topics include: principles of population genetics; effects of evolutionary forces on pattern of genomic variation; epidemiologic designs; genotype-phenotype association analyses of complex traits; missing heritability. Weekly interactive computing sessions will provide guided exercises analyzing real genomic data. Pre-requisite: basic understanding of probability and access to a laptop computer.
Terms: Win | Units: 1
Instructors: Tang, H. (PI)

BIOS 260: Principles of Quantitative Biological Microscopy and Image Analysis

Lectures and laboratories emphasizing hands-on experience. Microscopy topics include microscope optics, resolution limits, Koehler illumination, fluorescence microscopy, confocal, TIRF, FRET, photobleaching and super-resolution. Image analysis topics include using CellProfiler, ImageJ, and MATLAB scripts to carry out segmentation and analyze subcellular localization, RNA FISH, live cell-cycle dynamics, and cell tracking. Prerequisite: basic physics.
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints