2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 31 results for: GENE

GENE 104Q: Law and the Biosciences

Preference to sophomores. Focus is on human genetics; also assisted reproduction and neuroscience. Topics include forensic use of DNA, genetic testing, genetic discrimination, eugenics, cloning, pre-implantation genetic diagnosis, neuroscientific methods of lie detection, and genetic or neuroscience enhancement. Student presentations on research paper conclusions.
Terms: Aut | Units: 3 | UG Reqs: WAY-ER, Writing 2
Instructors: Greely, H. (PI)

GENE 199: Undergraduate Research

Students undertake investigations sponsored by individual faculty members. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit

GENE 202: Human Genetics

Utilizes lectures and small group activities to develop a working knowlege of human genetics as applicable to clinical medicine. Basic principles of inheritance, risk assessment, and population genetics are illustrated using examples drawn from diverse areas of medical genetics practice including prenatal, pediatric, adult and cancer genetics. Practical aspects of molecular and cytogenetic diagnostic methods are emphasized. Existing and emerging treatment strategies for single gene disorders are also covered. Prerequisites: basic genetics. Only available to MD and MOM students.
Terms: Aut | Units: 4

GENE 214: Representations and Algorithms for Computational Molecular Biology (BIOE 214, BIOMEDIN 214, CS 274)

BIOMEDIN 214: Representations and Algorithms for Computational Molecular Biology ( BIOE 214, CS 274, GENE 214)Topics: This is a graduate level introduction to bioinformatics and computational biology, algorithms for alignment of biological sequences and structures, BLAST, phylogenetic tree construction, hidden Markov models, basic structural computations on proteins, protein structure prediction, molecular dynamics and energy minimization, statistical analysis of 3D structure, knowledge controlled terminologies for molecular function, expression analysis, chemoinformatics, pharmacogenetics, network biology. Lectures are supplemented with assignments and programming projects, which allow students to implement important computational biology algorithms. Firm prerequisite: CS 106B. NOTE: For students in the Department of Biomedical Data Science Program, this core course MUST be taken as a letter grade only.
Terms: Aut | Units: 3-4

GENE 215: Frontiers in Biological Research (BIOC 215, DBIO 215)

Students analyze cutting edge science, develop a logical framework for evaluating evidence and models, and enhance their ability to design original research through exposure to experimental tools and strategies. The class runs in parallel with the Frontiers in Biological Research seminar series. Students and faculty meet on the Tuesday preceding each seminar to discuss a landmark paper in the speaker's field of research. Following the Wednesday seminar, students meet briefly with the speaker for a free-range discussion which can include insights into the speakers' paths into science and how they pick scientific problems.
Terms: Aut, Win, Spr | Units: 1 | Repeatable 3 times (up to 3 units total)

GENE 219: Current Issues in Genetics

Current Issues in Genetics is an in-house seminar series that meets each Academic Quarter for one hour per week (Friday, 4:00-5:00) and features talks by Genetics Department faculty, students, and postdoctoral fellows (with occasional visiting speakers). Thus, over the year, it provides a comprehensive overview of the work going on in the Department. First-year Ph.D. students in Genetics are required to enroll during all four Quarters, and students from other programs may be permitted to enroll with prior permission of the instructors.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 12 times (up to 12 units total)

GENE 224: Principles of Pharmacogenomics (BIOMEDIN 224)

This course is an introduction to pharmacogenomics, including the relevant pharmacology, genomics, experimental methods (sequencing, expression, genotyping), data analysis methods and bioinformatics. The course reviews key gene classes (e.g., cytochromes, transporters) and key drugs (e.g., warfarin, clopidogrel, statins, cancer drugs) in the field. Resources for pharmacogenomics (e.g., PharmGKB, Drugbank, NCBI resources) are reviewed, as well as issues implementing pharmacogenomics testing in the clinical setting. Reading of key papers, including student presentations of this work; problem sets; final project selected with approval of instructor. Prerequisites: two of BIO 41, 42, 43, 44X, 44Y or consent of instructor.
Terms: Aut, Spr | Units: 3

GENE 225: Healthcare Venture Capital

How are healthcare startups financed? Venture funds invest in risky companies but how do they themselves get funded, and how do they evaluate companies? How do company founders prepare for capital raising? How does intellectual property play? We explain both from the investor and founder viewpoints to analyze how to a) start a venture capital fund; b) present a healthcare company to a venture fund. We discuss financial frameworks specifically for the healthcare sector and how it differs to other segments. Additionally, guest lectures from venture capitalists, angel investors, and company founders will explain their respective perspectives.
Terms: Aut | Units: 2-3 | Repeatable 2 times (up to 6 units total)

GENE 260: Supervised Study

Genetics graduate student lab research from first quarter to filing of candidacy. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints