2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 76 results for: CS

CS 243: Program Analysis and Optimizations

Program analysis techniques used in compilers and software development tools to improve productivity, reliability, and security. The methodology of applying mathematical abstractions such as graphs, fixpoint computations, binary decision diagrams in writing complex software, using compilers as an example. Topics include data flow analysis, instruction scheduling, register allocation, parallelism, data locality, interprocedural analysis, and garbage collection. Prerequisites: 103 or 103B, and 107.
Terms: Win | Units: 3-4

CS 245: Database Systems Principles

File organization and access, buffer management, performance analysis, and storage management. Database system architecture, query optimization, transaction management, recovery, concurrency control. Reliability, protection, and integrity. Design and management issues. Prerequisites: 145, 161.
Terms: Win | Units: 3

CS 246: Mining Massive Data Sets

Distributed file systems: Hadoop, map-reduce; PageRank, topic-sensitive PageRank, spam detection, hubs-and-authorities; similarity search; shingling, minhashing, random hyperplanes, locality-sensitive hashing; analysis of social-network graphs; association rules; dimensionality reduction: UV, SVD, and CUR decompositions; algorithms for very-large-scale mining: clustering, nearest-neighbor search, gradient descent, support-vector machines, classification, and regression; submodular function optimization. Prerequisites: At lease one of CS107 or CS145; at least one of CS109 or STAT116, or equivalent.
Terms: Win | Units: 3-4
Instructors: Leskovec, J. (PI)

CS 246H: Mining Massive Data Sets Hadoop Lab

Supplement to CS 246 providing additional material on Hadoop. Students will learn how to implement data mining algorithms using Hadoop, how to implement and debug complex MapReduce jobs in Hadoop, and how to use some of the tools in the Hadoop ecosystem for data mining and machine learning. Topics: Hadoop, MapReduce, HDFS, combiners, secondary sort, distributed cache, SQL on Hadoop, Hive, Cloudera ML/Oryx, Mahout, Hadoop streaming, implementing Hadoop jobs, debugging Hadoop jobs, TF-IDF, Pig, Sqoop, Oozie, HBase, Impala. Prerequisite: CS 107 or equivalent.
Terms: Win | Units: 1

CS 248: Interactive Computer Graphics

This is the second course in the computer graphics sequence, and as such it assumes a strong familiarity with rendering and image creation. The course has a strong focus on computational geometry, animation, and simulation. Topics include splines, implicit surfaces, geometric modeling, collision detection, animation curves, particle systems and crowds, character animation, articulation, skinning, motion capture and editing, rigid and deformable bodies, and fluid simulation. As a final project, students implement an interactive video game utilizing various concepts covered in the class. Games may be designed on mobile devices, in a client/server/browser environment, or on a standard personal computer. Prerequisite: CS148.
Terms: Win | Units: 3-4
Instructors: Fedkiw, R. (PI)

CS 254: Computational Complexity

An introduction to computational complexity theory. The P versus NP problem; diagonalization and relativization; space complexity, Savitch's algorithm, NL=coNL, Reingold's algorithm; counting problem and #P-completeness; circuit complexity; pseudorandomness, derandomixation, and the Natural Proofs barrier; complexity of approximation; quantum computing. Prerequisites: 154 or equivalent; mathematical maturity.
Terms: Win | Units: 3
Instructors: Trevisan, L. (PI)

CS 255: Introduction to Cryptography

For advanced undergraduates and graduate students. Theory and practice of cryptographic techniques used in computer security. Topics: encryption (symmetric and public key), digital signatures, data integrity, authentication, key management, PKI, zero-knowledge protocols, and real-world applications. Prerequisite: basic probability theory.
Terms: Win | Units: 3
Instructors: Boneh, D. (PI)

CS 261: Optimization and Algorithmic Paradigms

Algorithms for network optimization: max-flow, min-cost flow, matching, assignment, and min-cut problems. Introduction to linear programming. Use of LP duality for design and analysis of algorithms. Approximation algorithms for NP-complete problems such as Steiner Trees, Traveling Salesman, and scheduling problems. Randomized algorithms. Introduction to online algorithms. Prerequisite: 161 or equivalent.
Terms: Win | Units: 3
Instructors: Plotkin, S. (PI)

CS 262: Computational Genomics (BIOMEDIN 262)

Applications of computer science to genomics, and concepts in genomics from a computer science point of view. Topics: dynamic programming, sequence alignments, hidden Markov models, Gibbs sampling, and probabilistic context-free grammars. Applications of these tools to sequence analysis: comparative genomics, DNA sequencing and assembly, genomic annotation of repeats, genes, and regulatory sequences, microarrays and gene expression, phylogeny and molecular evolution, and RNA structure. Prerequisites: 161 or familiarity with basic algorithmic concepts. Recommended: basic knowledge of genetics.
Terms: Win | Units: 3

CS 267: Graph Algorithms

An introduction to advanced topics in graph algorithms. Focusing on a variety of graph problems, the course will explore topics such as small space graph data structures, approximation algorithms, dynamic algorithms, and algorithms for special graph classes. Topics include: approximation algorithms for shortest paths and graph matching, distance oracles, graph spanners, cliques and graph patterns, dynamic algorithms, graph coloring, algorithms for planar graphs. Prerequisites: 161 or the equivalent mathematical maturity.
Instructors: Williams, V. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints