2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

271 - 280 of 298 results for: ME

ME 440: Electronic States and Transitions In Quantum Confined Structures

Summary of selected quantum mechanical concepts with focus on phenomena related to charge separation and transfer. The physics and thermodynamics of excitons described and related to experimental observations. The energy state of electrons as function of confinement size and strength. Presentations include on electron tunneling, measuring the density of electronic states, dielectric behavior of materials, Bose Einstein condensation of quasi particles, and excitons in quantum wells and dots.
Last offered: Spring 2010

ME 450: Advances in Biotechnology

Guest academic and industrial speakers. Latest developments in fields such as bioenergy, green process technology, production of industrial chemicals from renewable resources, protein pharmaceutical production, industrial enzyme production, stem cell applications, medical diagnostics, and medical imaging. Biotechnology ethics, business and patenting issues, and entrepreneurship in biotechnology.

ME 451A: Advanced Fluid Mechanics Multiphase Flows

Single particle and multi-particle fluid flow phenomena, mass, momentum and heat transfer, characteristic time and length scales, non-dimensional groups; collection of dispersed-phase elements: instantaneous and averaged descriptions for multiphase flow, Eulerian-Eulerian and Lagrangian-Eulerian statistical representations, mixture theories; models for drag, heat and mass transfer; dilute to dense two-phase flow, granular flows; computer simulation approaches for multiphase flows, emerging research topics. Prerequisites: graduate level fluid mechanics and engineering mathematics, and undergraduate engineering mechanics and thermodynamics.
Terms: Aut | Units: 3

ME 451B: Advanced Fluid Mechanics Flow Instability

Waves in fluids: surface waves, internal waves, inertial and acoustic waves, dispersion and group velocity, wave trains, transport due to waves, propagation in slowly varying medium, wave steepening, solitons and solitary waves, shock waves. Instability of fluid motion: dynamical systems, bifurcations, Kelvin-Helmholtz instability, Rayleigh-Benard convection, energy method, global stability, linear stability of parallel flows, necessary and sufficient conditions for stability, viscosity as a destabilizing factor, convective and absolute instability. Focus is on flow instabilities. Prerequisites: graduate courses in compressible and viscous flow.
Terms: Spr | Units: 3

ME 451C: Advanced Fluid Mechanics - Compressible Turbulence

Conservation equations. Thermodynamics of ideal gases. Isentropic flows. Crocco-Vazsonyi¿s equation, creation and destruction of vorticity by compressibility effects. Acoustics and generation of sound by turbulence. Shock waves. Kovasznay's modal decomposition of compressible flow, linear and nonlinear modal interactions, interaction of turbulence with shock waves. Turbulent Mach number. Shocklets. Energetics of compressible turbulence, effects of compressibility on homogeneous turbulence, free-shear flows and turbulent boundary layers. Van Driest transformation, recovery temperature, and shock/boundary layer interaction. Strong Reynolds analogy. Subgrid-scale modeling for compressible turbulence. Hypervelocity flows. Prerequisites: Familiarity with compressible laminar flows ( ME 355) and incompressible turbulence ( ME 361), or consent of the instructor.
Terms: Spr | Units: 3
Instructors: Urzay, J. (PI)

ME 451D: Microhydrodynamics (CHEMENG 310)

Transport phenomena on small-length scales appropriate to applications in microfluidics, complex fluids, and biology. The basic equations of mass, momentum, and energy, derived for incompressible fluids and simplified to the slow-flow limit. Topics: solution techniques utilizing expansions of harmonic and Green's functions; singularity solutions; flows involving rigid particles and fluid droplets; applications to suspensions; lubrication theory for flows in confined geometries; slender body theory; and capillarity and wetting. Prerequisites: 120A,B, 300, or equivalents.
Terms: Win | Units: 3

ME 453A: Finite Element-Based Modeling and Simulation of Linear Fluid/Structure Interaction Problems

Basic physics behind many fluid/structure interaction phenomena. Finite element-based computational approaches for linear modeling and simulation in the frequency domain. Vibrations of elastic structures. Linearized equations of small movements of inviscid fluids. Sloshing modes. Hydroelastic vibrations. Acoustic cavity modes. Structural-acoustic vibrations. Applications to liquid containers and underwater signatures. Prerequisite: graduate course in the finite element method or consent of instructor.
Last offered: Winter 2007

ME 453B: Computational Fluid Dynamics Based Modeling of Nonlinear Fluid/Structure Interaction Problems

Basic physics behind many high-speed flow/structure interaction phenomena. Modern computational approaches for nonlinear modeling and simulation in the time domain. Dynamic equilibrium of restrained and unrestrained elastic structures. Corotational formulation for large structural displacements and rotations. Arbitrary Lagrangian-Eulerian description of inviscid and viscous flows. Time-accurate CFD on moving and deforming grids. Discrete geometric conservation laws. Discretization of transmission conditions on non-matching discrete fluid/structure interfaces. Coupled fluid/mesh-motion/structure time integration schemes. Application to divergence, flutter, and buffeting. Prerequisites: graduate course in the finite element method, and in computational fluid dynamics.

ME 455: Complex Fluids and Non-Newtonian Flows (CHEMENG 462)

Definition of a complex liquid and microrheology. Division of complex fluids into suspensions, solutions, and melts. Suspensions as colloidal and non-colloidal. Extra stress and relation to the stresslet. Suspension rheology including Brownian and non-Brownian fibers. Microhydrodynamics and the Fokker-Planck equation. Linear viscoelasticity and the weak flow limit. Polymer solutions including single mode (dumbbell) and multimode models. Nonlinear viscoelasticity. Intermolecular effects in nondilute solutions and melts and the concept of reptation. Prerequisites: low Reynolds number hydrodynamics or consent of instructor.
Terms: Spr | Units: 3

ME 457: Fluid Flow in Microdevices

Physico-chemical hydrodynamics. Creeping flow, electric double layers, and electrochemical transport such as Nernst-Planck equation; hydrodynamics of solutions of charged and uncharged particles. Device applications include microsystems that perform capillary electrophoresis, drug dispension, and hybridization assays. Emphasis is on bioanalytical applications where electrophoresis, electro-osmosis, and diffusion are important. Prerequisite: consent of instructor.
Last offered: Spring 2016
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints