2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

81 - 90 of 430 results for: CSI::certificate ; Currently searching offered courses. You can also include unoffered courses

CS 377E: Designing Solutions to Global Grand Challenges

In this course we creatively apply information technologies to collectively attack Global Grand Challenges (e.g., global warming, rising healthcare costs and declining access, and ensuring quality education for all). Interdisciplinary student teams will carry out need-finding within a target domain, followed by brainstorming to propose a quarter long project. Teams will spend the rest of the quarter applying user-centered design methods to rapidly iterate through design, prototyping, and testing of their solutions. This course will interweave a weekly lecture with a weekly studio session where students apply the techniques hands-on in a small-scale, supportive environment.
Terms: Spr | Units: 3-4 | Grading: Letter (ABCD/NP)
Instructors: Landay, J. (PI)

CS 402: Beyond Bits and Atoms: Designing Technological Tools (EDUC 236)

Practicum in designing and building technology-enabled curricula and hands-on learning environments. Students use software toolkits and state-of-the-art fabrication machines to design educational software, educational toolkits, and tangible user interfaces. The course will focus on designing low-cost technologies, particularly for urban school in the US and abroad. We will explore theoretical and design frameworks from the constructionist learning perspective, critical pedagogy, interaction design for children.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit

CS 402L: Beyond Bits and Atoms - Lab (EDUC 211)

This course is a hands-on lab in the prototyping and fabrication of tangible technologies, with a special focus in learning and education. We will learn how to use state-of-the-art fabrication machines (3D printers, 3D scanners, laser cutters, routers) to design educational toolkits, educational toys, science kits, and tangible user interfaces. A special focus of the course will be to design low-cost technologies, particularly for urban school in the US and abroad.
Terms: Win | Units: 1-3 | Grading: Letter (ABCD/NP)

CSB 242: Drug Discovery and Development Seminar Series

The scientific principles and technologies involved in making the transition from a basic biological observation to the creation of a new drug emphasizing molecular and genetic issues. Prerequisite: biochemistry, chemistry, or bioengineering.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Medical Satisfactory/No Credit

CSB 245: Economics of Biotechnology

Focuses on translation of promising research discovery into marketed drugs and the integration of scientific method, clinical needs assessment, clinical and regulatory strategy, market analysis, economic considerations, and the influence of the healthcare economic ecosystem necessary for successful translation. Explores the economic perspectives of various stakeholders--patients, providers, payers, biotechnology and pharmaceutical companies, FDA, and financial markets--and how they influence drug development.
Terms: Spr | Units: 2 | Grading: Medical Option (Med-Ltr-CR/NC)
Instructors: Grimes, K. (PI)

CSRE 103B: Race, Ethnicity, and Linguistic Diversity in Classrooms: Sociocultural Theory and Practices (AFRICAAM 106, EDUC 103B, EDUC 337)

Focus is on classrooms with students from diverse racial, ethnic and linguistic backgrounds. Studies, writing, and media representation of urban and diverse school settings; implications for transforming teaching and learning. Issues related to developing teachers with attitudes, dispositions, and skills necessary to teach diverse students.
Terms: Aut | Units: 3-5 | UG Reqs: WAY-ED | Grading: Letter or Credit/No Credit

CSRE 112X: Urban Education (AFRICAAM 112, EDUC 112, EDUC 212, SOC 129X, SOC 229X)

(Graduate students register for EDUC 212 or SOC 229X). Combination of social science and historical perspectives trace the major developments, contexts, tensions, challenges, and policy issues of urban education.
Terms: Win | Units: 3-5 | UG Reqs: GER:DB-SocSci, WAY-ED | Grading: Letter or Credit/No Credit
Instructors: Ball, A. (PI)

DESINST 255: Design for Health: Helping Patients Navigate the System (EMED 255)

For many people, participating in the American healthcare system is confusing, frustrating and often disempowering. It is also an experience fueled with emotional intensity and feelings of vulnerability. The current ecosystem, with its complexity and multiple stakeholders, is rife with human-centered design opportunities. An especially sticky set of issues lies in the ways people navigate healthcare: understanding how the system works, accessing information about services, making decisions about treatment and interventions, and advocating for needs.nnAdmission by application. See dschool.stanford.edu/classesn for more information.
Terms: Aut | Units: 4 | Grading: Letter (ABCD/NP)
Instructors: Janka, D. (PI)

DESINST 423: Design for Healthy Behavior Change

In the U.S., 75% of medical expenditures are for illnesses that are predominantly lifestyle related such as type 2 diabetes, arthritis and heart disease. It has been shown as people modify their lifestyles with healthier habits, medical problems can be reduced or avoided and a healthier and happier life achieved. The class employs design thinking in teams while working directly with volunteers in the community to help them achieve their health goals. There is an individual project and a team project each with multiple milestones. Learn and experience the design thinking process through interactions and design working within student teams and working directly with patient-volunteers from the practice of Drs. Ann Lindsay and Alan Glaseroff from the Stanford Coordinated Care Clinic. Admission by application. See dschool.stanford.edu/classes for more information.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)

EARTHSYS 101: Energy and the Environment (ENERGY 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints