2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

21 - 30 of 430 results for: CSI::certificate ; Currently searching offered courses. You can also include unoffered courses

BIOE 374A: Biodesign Innovation: Needs Finding and Concept Creation (ME 368A, MED 272A)

In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new medtech products to address them, and plan for their development into patient care. During the first quarter (winter 2017), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2017), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent medtech experts and investors. Class sessions include faculty-led instruction and case demonstrations, coaching sessions by industry specialists, expert guest lecturers, and intera more »
In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new medtech products to address them, and plan for their development into patient care. During the first quarter (winter 2017), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2017), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent medtech experts and investors. Class sessions include faculty-led instruction and case demonstrations, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are expected to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of more than 40 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Terms: Win | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

BIOE 374B: Biodesign Innovation: Concept Development and Implementation (ME 368B, MED 272B)

In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new medtech products to address them, and plan for their development into patient care. During the first quarter (winter 2017), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2017), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent medtech experts and investors. Class sessions include faculty-led instruction and case demonstrations, coaching sessions by industry specialists, expert guest lecturers, and intera more »
In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new medtech products to address them, and plan for their development into patient care. During the first quarter (winter 2017), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2017), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent medtech experts and investors. Class sessions include faculty-led instruction and case demonstrations, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are expected to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of more than 40 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Terms: Spr | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

BIOE 393: Bioengineering Departmental Research Colloquium

Bioengineering department labs at Stanford present recent research projects and results. Guest lecturers. Topics include applications of engineering to biology, medicine, biotechnology, and medical technology, including biodesign and devices, molecular and cellular engineering, regenerative medicine and tissue engineering, biomedical imaging, and biomedical computation. Aut, Win, Spr (Lin, Riedel-Kruse, Barron)
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

BIOMEDIN 156: Economics of Health and Medical Care (BIOMEDIN 256, ECON 126, HRP 256)

Institutional, theoretical, and empirical analysis of the problems of health and medical care. Topics: demand for medical care and medical insurance; institutions in the health sector; economics of information applied to the market for health insurance and for health care; measurement and valuation of health; competition in health care delivery. Graduate students with research interests should take ECON 249. Prerequisites: ECON 50 and either ECON 102A or STATS 116 or the equivalent. Recommended: ECON 51.
Terms: Spr | Units: 5 | UG Reqs: WAY-SI | Grading: Medical Option (Med-Ltr-CR/NC)

BIOMEDIN 215: Data Driven Medicine

The widespread adoption of electronic health records (EHRs) has created a new source of ¿big data¿¿namely, the record of routine clinical practice¿as a by-product of care. This graduate class will teach you how to use EHRs and other patient data to discover new clinical knowledge and improve healthcare. Upon completing this course, you should be able to: differentiate between and give examples of categories of research questions and the study designs used to address them, describe common healthcare data sources and their relative advantages and limitations, extract and transform various kinds of clinical data to create analysis-ready datasets, design and execute an analysis of a clinical dataset based on your familiarity with the workings, applicability, and limitations of common statistical methods, evaluate and criticize published research using your knowledge of 1-4 to generate new research ideas and separate hype from reality. Prerequisites: CS 106A or equivalent, STATS 60 or equivalent. Recommended: STATS 216, CS 145, STATS 305
Terms: Aut | Units: 3 | Grading: Medical Option (Med-Ltr-CR/NC)

BIOMEDIN 251: Outcomes Analysis (HRP 252, MED 252)

Methods of conducting empirical studies which use large existing medical, survey, and other databases to ask both clinical and policy questions. Econometric and statistical models used to conduct medical outcomes research. How research is conducted on medical and health economics questions when a randomized trial is impossible. Problem sets emphasize hands-on data analysis and application of methods, including re-analyses of well-known studies. Prerequisites: one or more courses in probability, and statistics or biostatistics.
Terms: Spr | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

BIOMEDIN 256: Economics of Health and Medical Care (BIOMEDIN 156, ECON 126, HRP 256)

Institutional, theoretical, and empirical analysis of the problems of health and medical care. Topics: demand for medical care and medical insurance; institutions in the health sector; economics of information applied to the market for health insurance and for health care; measurement and valuation of health; competition in health care delivery. Graduate students with research interests should take ECON 249. Prerequisites: ECON 50 and either ECON 102A or STATS 116 or the equivalent. Recommended: ECON 51.
Terms: Spr | Units: 5 | Grading: Medical Option (Med-Ltr-CR/NC)

BIOS 250: Preparation and Practice: Interdisciplinary Drug Discovery

Focuses on decision making in science, with particular attention to skills for identifying when to solicit interdisciplinary input, and how to guide such discussions to productive endpoints. Uses case studies based on Novartis projects to teach ways to leverage interdisciplinary knowledge, effectively communicate across disciplines, and drive teams to decision points. Two-day workshop presented by Novartis scientists who lead participants through these real life examples of interactive teams within pharma solving problems through collaborative decision making. Participants develop collaborative decision making skills highlighted through group exercises.
Terms: Aut | Units: 1 | Grading: Medical Satisfactory/No Credit
Instructors: Eberle, S. (PI)

CEE 63: Weather and Storms (CEE 263C)

Daily and severe weather and global climate. Topics: structure and composition of the atmosphere, fog and cloud formation, rainfall, local winds, wind energy, global circulation, jet streams, high and low pressure systems, inversions, el Niño, la Niña, atmosphere/ocean interactions, fronts, cyclones, thunderstorms, lightning, tornadoes, hurricanes, pollutant transport, global climate and atmospheric optics.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Jacobson, M. (PI)

CEE 64: Air Pollution and Global Warming: History, Science, and Solutions (CEE 263D)

Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth's atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UG Reqs: GER: DBNatSci
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Jacobson, M. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints