2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

191 - 200 of 430 results for: CSI::certificate ; Currently searching offered courses. You can also include unoffered courses

EE 293A: Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution (ENERGY 293A, MATSCI 156, MATSCI 256)

Operating principles and applications of emerging technological solutions to the energy demands of the world. The scale of global energy usage and requirements for possible solutions. Basic physics and chemistry of solar cells, fuel cells, and batteries. Performance issues, including economics, from the ideal device to the installed system. The promise of materials research for providing next generation solutions. Undergraduates register in 156 for 4 units; graduates register in 256 for 3 units. Prerequisites: MATSCI 145 and 152 or equivalent coursework in thermodynamics and electronic properties.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit

EE 293B: Fundamentals of Energy Processes (ENERGY 293B)

For seniors and graduate students. Covers scientific and engineering fundamentals of renewable energy processes involving heat. Thermodynamics, heat engines, solar thermal, geothermal, biomass. Recommended: MATH 19-21; PHYSICS 41, 43, 45
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit

EMED 227: Health Care Leadership

Healthcare Leadership class brings eminent healthcare leaders from a variety of sectors within healthcare to share their personal reflections and insights on effective leadership. Speakers discuss their personal core values, share lessons learned and their recipe for effective leadership in the healthcare field, including reflection on career and life choices. Speakers include CEOs of healthcare technology, pharmaceutical and other companies, leaders in public health, eminent leaders of hospitals, academia, biotechnology companies and other health care organizations. The class will also familiarize the students with the healthcare industry, as well as introduce concepts and skills relevant to healthcare leadership. nnStudents enrolling for 1 unit attend one lecture per week on Wednesdays; students enrolling for 3 units attend two lectures per week (Mon & Wed). Please register under section 2 if taking the class for 1-2 units. Open to undergraduate and graduate students. No prerequisites required.
Terms: Win | Units: 1-3 | Grading: Medical Option (Med-Ltr-CR/NC)
Instructors: Trounce, M. (PI)

EMED 255: Design for Health: Helping Patients Navigate the System (DESINST 255)

For many people, participating in the American healthcare system is confusing, frustrating and often disempowering. It is also an experience fueled with emotional intensity and feelings of vulnerability. The current ecosystem, with its complexity and multiple stakeholders, is rife with human-centered design opportunities. An especially sticky set of issues lies in the ways people navigate healthcare: understanding how the system works, accessing information about services, making decisions about treatment and interventions, and advocating for needs.nnAdmission by application. See dschool.stanford.edu/classesn for more information.
Terms: Aut | Units: 4 | Grading: Letter (ABCD/NP)

ENERGY 101: Energy and the Environment (EARTHSYS 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

ENERGY 101A: Energizing California

A weekend field trip featuring renewable and nonrenewable energy installations in Northern California. Tour geothermal, bioenergy, and natural gas field sites with expert guides from the Department of Energy Resources Engineering. Requirements: One campus meeting and weekend field trip. Enrollment limited to 25. Freshman have first choice.
Terms: Spr | Units: 1 | Grading: Satisfactory/No Credit

ENERGY 102: Fundamentals of Renewable Power (EARTHSYS 102)

Do you want a much better understanding of renewable power technologies? Did you know that wind and solar are the fastest growing forms of electricity generation? Are you interested in hearing about the most recent, and future, designs for green power? Do you want to understand what limits power extraction from renewable resources and how current designs could be improved? This course dives deep into these and related issues for wind, solar, biomass, geothermal, tidal and wave power technologies. We welcome all student, from non-majors to MBAs and grad students. If you are potentially interested in an energy or environmental related major, this course is particularly useful. Recommended: Math 21 or 42.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

ENERGY 104: Sustainable Energy for 9 Billion

This course explores the transition to a sustainable energy system at large scales (national and global), and over long time periods (decades). Explores the drivers of global energy demand and the fundamentals of technologies that can meet this demand sustainably. Focuses on constraints affecting large-scale deployment of technologies, as well as inertial factors affecting this transition. Problems will involve modeling global energy demand, deployment rates for sustainable technologies, technological learning and economics of technical change. Recommended: ENERGY 101, 102.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR | Grading: Letter (ABCD/NP)

ENERGY 110: Engineering Economics

The success of energy projects and companies is judged by technical, economic and financial criteria. This course will introduce concepts of engineering economy, e.g., time value of money, life cycle costs and financial metrics, and explore their application to the business of energy. We will use case studies, business school cases and possibly industry guest lecturers. Examples from the hydrocarbon businesses that dominate energy today will provide the framework for the analysis of both conventional and renewable energy.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)

ENERGY 123: When Technology Meets Reality; An In-depth Look at the Deepwater Horizon Blowout and Oil Spill

The Deepwater Horizon blowout and spill in April 2010 occurred on one of the most advanced deepwater drilling rigs in the world operated by one of the most experienced companies. In this course we will look at and discuss the technologies and management practices involved in deepwater drilling and discuss how an accident like this happens and what could have been done differently to avoid it. We will focus on the Horizon and also look briefly at other high profile industrial and technological accidents.
Terms: Spr | Units: 1 | Grading: Letter or Credit/No Credit
Instructors: Sears, R. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints