2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

11 - 20 of 36 results for: STATS

STATS 214: Machine Learning Theory (CS 229M)

How do we use mathematical thinking to design better machine learning methods? This course focuses on developing mathematical tools for answering this question. This course will cover fundamental concepts and principled algorithms in machine learning, particularly those that are related to modern large-scale non-linear models. The topics include concentration inequalities, generalization bounds via uniform convergence, non-convex optimization, implicit regularization effect in deep learning, and unsupervised learning and domain adaptations. Prerequisites: linear algebra ( MATH 51 or CS 205), probability theory ( STATS 116, MATH 151 or CS 109), and machine learning ( CS 229, STATS 229, or STATS 315A).
Terms: Aut | Units: 3

STATS 223: Sequential Analysis (STATS 323)

This course will survey the history of sequential analysis from its origin in the 1940s via its continuing role in clinical trials to current activity in machine learning. Subject to the limitations of time, the following topics will be discussed: parametric and semi-parametric hypothesis testing from Wald to sequential clinical trials; fixed precision estimation; change-point detection and estimation; iterative stochastic algorithms and machine learning; anytime-valid inference; optimal stopping, dynamic programming, and stochastic control; multi-armed bandits; applications. Prerequisites: for 223, Stats 200 or equivalent; for 323, Stats 300A and 310A.
Terms: Aut | Units: 3

STATS 229: Machine Learning (CS 229)

Topics: statistical pattern recognition, linear and non-linear regression, non-parametric methods, exponential family, GLMs, support vector machines, kernel methods, deep learning, model/feature selection, learning theory, ML advice, clustering, density estimation, EM, dimensionality reduction, ICA, PCA, reinforcement learning and adaptive control, Markov decision processes, approximate dynamic programming, and policy search. Prerequisites: knowledge of basic computer science principles and skills at a level sufficient to write a reasonably non-trivial computer program in Python/NumPy to the equivalency of CS106A, CS106B, or CS106X, familiarity with probability theory to the equivalency of CS 109, MATH151, or STATS 116, and familiarity with multivariable calculus and linear algebra to the equivalency of MATH51 or CS205.
Terms: Aut, Win, Sum | Units: 3-4

STATS 232: Machine Learning for Sequence Modeling (CS 229B)

Sequence data and time series are becoming increasingly ubiquitous in fields as diverse as bioinformatics, neuroscience, health, environmental monitoring, finance, speech recognition/generation, video processing, and natural language processing. Machine learning has become an indispensable tool for analyzing such data; in fact, sequence models lie at the heart of recent progress in AI like GPT3. This class integrates foundational concepts in time series analysis with modern machine learning methods for sequence modeling. Connections and key differences will be highlighted, as well as how grounding modern neural network approaches with traditional interpretations can enable powerful leaps forward. You will learn theoretical fundamentals, but the focus will be on gaining practical, hands-on experience with modern methods through real-world case studies. You will walk away with a broad and deep perspective of sequence modeling and key ways in which such data are not just 1D images.
Terms: Aut | Units: 3-4
Instructors: Fox, E. (PI)

STATS 242: NeuroTech Training Seminar (NSUR 239)

This is a required course for students in the NeuroTech training program, and is also open to other graduate students interested in learning the skills necessary for neurotechnology careers in academia or industry. Over the academic year, topics will include: emerging research in neurotechnology, communication skills, team science, leadership and management, intellectual property, entrepreneurship and more.
Terms: Aut, Win, Spr | Units: 1 | Repeatable 9 times (up to 9 units total)

STATS 249: Experimental Immersion in Neuroscience (NSUR 249)

This course provides students from technical backgrounds (e.g., physics, applied physics, electrical or chemical engineering, bioengineering, computer science, statistics) the opportunity to learn how they can apply their expertise to advancing experimental research in the neurosciences. Students will visit one neuroscience lab per week to watch experiments, understand the technical apparatus and animal models being used, discuss the questions being addressed, and interact with students and others conducting the research. This course is strongly encouraged for students who wish to apply to the NeuroTech graduate training program. Our course has limited enrollment, therefore, if you are interested in registering please complete the form here: https://forms.gle/QXmkVfCqeS4zHmwB7 prior and someone will follow-up with you with a permission code accordingly.
Terms: Aut | Units: 1

STATS 256: Modern Statistics for Modern Biology (BIOS 221, STATS 366)

Application based course in nonparametric statistics. Modern toolbox of visualization and statistical methods for the analysis of data, examples drawn from immunology, microbiology, cancer research and ecology. Methods covered include multivariate methods (PCA and extensions), sparse representations (trees, networks, contingency tables) as well as nonparametric testing (Bootstrap, permutation and Monte Carlo methods). Hands on, use R and cover many Bioconductor packages. Prerequisite: Working knowledge of R and two core Biology courses. Note that the 155 offering is a writing intensive course for undergraduates only and requires instructor consent. (WIM). See https://web.stanford.edu/class/bios221/index.html
Terms: Aut | Units: 3

STATS 260A: Workshop in Biostatistics (BIODS 260A)

Applications of data science techniques to current problems in biology, medicine and healthcare. To receive credit for one or two units, a student must attend every workshop. To receive two units, in addition to attending every workshop, the student is required to write a two page critical summary of one of the workshops, with the choice made by the student.
Terms: Aut | Units: 1-2 | Repeatable for credit

STATS 264: Foundations of Statistical and Scientific Inference (EPI 264)

The course will consist of readings and discussion of foundational papers and book sections in the domains of statistical and scientific inference. Topics to be covered include philosophy of science, interpretations of probability, Bayesian and frequentist approaches to statistical inference and current controversies about the proper use of p-values and research reproducibility. Recommended preparation: At least 2 quarters of biostatistics and one of epidemiology. Intended for second year Masters students or PhD students with at least 1 year of preceding graduate training.
Terms: Aut | Units: 1-2
Instructors: Goodman, S. (PI)

STATS 285: Massive Computational Experiments, Painlessly

Ambitious Data Science requires massive computational experimentation; the entry ticket for a solid PhD in some fields is now to conduct experiments involving 1 Million CPU hours. Recently several groups have created efficient computational environments that make it painless to run such massive experiments. This course reviews state-of-the-art practices for doing massive computational experiments on compute clusters in a painless and reproducible manner. Students will learn how to automate their computing experiments first of all using nuts-and-bolts tools such as Perl and Bash, and later using available comprehensive frameworks such as ClusterJob and CodaLab, which enables them to take on ambitious Data Science projects. The course also features few guest lectures by renowned scientists in the field of Data Science. Students should have a familiarity with computational experiments and be facile in some high-level computer language such as R, Matlab, or Python.
Terms: Aut | Units: 2
Instructors: Donoho, D. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints