2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

31 - 40 of 69 results for: BIOHOPK

BIOHOPK 234H: Topics in Comparative and Environmental Physiology

Seminar and discussion focused on current topics and research at the interface of physiology and ecology
Terms: Spr | Units: 1

BIOHOPK 250H: Ecological Mechanics (BIOHOPK 150H)

(Graduate students register for 250H.) The principles of life's physical interactions. We will explore basic physics. fluid mechanics, thermal dynamics, and materials science to see how the principles of these fields can be used to investigate ecology at levels from the individual to the community. Topics include: diffusion, boundary layers, fluid-dynamic forces, locomotion, heat-budget models, fracture mechanics, adhesion, beam theory, the statistics of extremes, and the theory of self-organization. Open to students from all backgrounds. Some familiarity with basic physics and calculus advantageous but not necessary.
Last offered: Spring 2016

BIOHOPK 252H: Physiology of Global Change (BIOHOPK 152H)

(Graduate students register for 252H.) Global change is leading to significant alterations in several environmental factors, including temperature, ocean acidity and oxygen availability. This course focuses on: (i) how these environmental changes lead to physiological stress and (ii) how, and to what extent, are organisms able to adapt through short-term acclimatization and evolutionary adaptation to cope with these stresses. A major focus of the class is to link changes in species' distribution patterns with underlying physiological mechanics that establish environmental optima and tolerance limits.
Last offered: Spring 2014

BIOHOPK 253H: Current Topics and Concepts in Quantitative Fish Dynamics and Fisheries Management (BIOHOPK 153H)

(Graduate students register for 253H) The course will focus on extensive reading of seminal and reference papers published in the literature in the last decade on modeling population biology, community dynamics and fishery management in the marine environment. Basic knowledge of population dynamics is welcome. The goal is to develop an appreciation on both traditional and cutting-edge modeling approaches to study the dynamics and management of marine populations subjected to natural or anthropogenic shocks and pressures.
Last offered: Spring 2015

BIOHOPK 254H: Animal Diversity: An Introduction to Evolution of Animal Form and Function from Larvae to Adults (BIOHOPK 154H)

Survey of invertebrate diversity, emphasizing form and function of both adult and larval life history stages. Focuses on how morphology, life histories, and development contribute to current views of the evolutionary diversification of multicellular animals. Labs are a hands-on exploration of animal diversity using local marine species as examples, as well as techniques of obtaining, handling, and maintaining larvae from early development through settlement. Lectures, labs, plus field trips. Satisfies Central Menu Area 3 for Bio majors. Prerequisite: Biology core or consent of instructors.
Last offered: Winter 2015

BIOHOPK 255H: Developmental Biology and Evolution (BIOHOPK 155H)

(Graduate students register for 255) This course focusses on how animals form their basic body plans; from the formation of their germ layers; ectoderm, endoderm and mesoderm, to how they are organized along the main developmental axes; the anteroposterior and dorsoventral axes. The course will focus in part on the molecular mechanisms that underlie these developmental decisions from work carried out in established developmental model species. However, we will also explore the current understanding of how these mechanisms evolved from new insights from emerging models representing a broad range of animal phyla. The setting at Hopkins Marine Station will allow us to carry out experiments from animals collected in the field, and the course will involve a substantial lab component to complement concepts and approaches presented in lecture. nPre-requisites : Biocore or by permission of instructor
Terms: Win | Units: 4
Instructors: Lowe, C. (PI)

BIOHOPK 256H: Hands-On Neurobiology: Structure, Function and Development (BIOHOPK 156H)

This laboratory course will examine neural and neuromuscular systems at a cellular level in selected vertebrate and invertebrate taxa using anatomical, physiological and molecular approaches. Intracellular dye injections and confocal microscopy will be used to visualize neuronal structure. Ca-imaging will permit functional analysis of living neurons. Electrical recording methods will be used to explore principles of excitability, synaptic transmission, sensory pathways and neural integration. Development of neural systems will be studied using molecular visualization methods. Work in the lab will be supplemented with informal lectures and discussions, and results of the labs will be reviewed weekly. Two 4-hour afternoon lab sessions per week
Terms: Spr | Units: 6

BIOHOPK 260H: Developmental Biology in the Ocean: Diverse Embryonic & Larval Strategies of marine invertebrates (BIOHOPK 160H)

(Graduate students register for 261H). Lab course is designed to introduce students to the diversity in the early developmental strategies of marine invertebrates and how an understanding of these microscopic life histories is key to understanding the evolutionary diversification of phyla and the distribution of their more familiar adults. Emphasis is on hands-on collection, spawning, observation and manipulation of embryos and their larvae.
Last offered: Spring 2014 | Repeatable 2 times (up to 16 units total)

BIOHOPK 261H: Invertebrate Zoology (BIOHOPK 161H)

(Graduate students register for 261H.) Survey of invertebrate diversity emphasizing form and function in a phylogenetic framework. Morphological diversity, life histories, physiology, and ecology of the major invertebrate groups, concentrating on local marine forms as examples. Current views on the phylogenetic relationships and evolution of the invertebrates. Lectures, lab, plus field trips. Satisfies Central Menu Area 3 for Bio majors. Prerequisite: Biology core or consent of instructor.
Terms: Win | Units: 5
Instructors: Watanabe, J. (PI)

BIOHOPK 262H: Comparative Animal Physiology (BIOHOPK 162H)

(Graduate students register for 262H.) How animals work. Topics: physiology of respiration, circulation, energy metabolism, thermal regulation, osmotic regulation, muscle physiology, and locomotion. Evolutionary and ecological physiology. Lectures, lab, and field research. An option to combine the course work with a more intensive research focus, with more units, is available. Satisfies Central Menu Area 3 for Bio majors. Prerequisite: Biology core or consent of instructor.
Last offered: Spring 2012
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints