2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 35 results for: PHYSICS

PHYSICS 15: Stars and Planets in a Habitable Universe

Is the Earth unique in our galaxy? Students learn how stars and our galaxy have evolved and how this produces planets and the conditions suitable for life. Discussion of the motion of the night sky and how telescopes collect and analyze light. The life-cycle of stars from birth to death, and the end products of that life cycle -- from dense stellar corpses to supernova explosions. Course covers recent discoveries of extrasolar planets -- those orbiting stars beyond our sun -- and the ultimate quest for other Earths. Intended to be accessible to non-science majors, material is explored quantitatively with problem sets using basic algebra and numerical estimates. Sky observing exercise and observatory field trips supplement the classroom work.
Terms: Aut, Sum | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 18N: Frontiers in Theoretical Physics and Cosmology

Preference to freshmen. The course will begin with a description of the current standard models of gravitation, cosmology, and elementary particle physics. We will then focus on frontiers of current understanding including investigations of very early universe cosmology, string theory, and the physics of black holes.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 21: Mechanics, Fluids, and Heat

How are the motions of objects and the behavior of fluids and gases determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and understand why objects move as they do (dynamics). Emphasis on how Newton's three laws of motion are applied to solids, liquids, and gases to describe phenomena as diverse as spinning gymnasts, blood flow, and sound waves. Understanding many-particle systems requires connecting macroscopic properties (e.g., temperature and pressure) to microscopic dynamics (collisions of particles). Laws of thermodynamics provide understanding of real-world phenomena such as energy conversion and performance limits of heat engines. Everyday examples are analyzed using tools of algebra and trigonometry. Problem-solving skills are developed, including verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite: high school algebra and trigonometry; calculus not required.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 22: Mechanics, Fluids, and Heat Laboratory

Guided hands-on exploration of concepts in classical mechanics, fluids, and thermodynamics with an emphasis on student predictions, observations and explanations. Pre- or corequisite: PHYSICS 21.
Terms: Aut | Units: 1

PHYSICS 45: Light and Heat

Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 45N: Topics in Light and Heat

Preference to freshmen. Explores the quantum and classical properties of light from stars, lasers and other sources. Includes modern applications ranging from gravity wave interferometers to x-ray lasers.
Terms: Aut | Units: 1

PHYSICS 46: Light and Heat Laboratory

Hands-on exploration of concepts in geometrical optics, wave optics and thermodynamics. Pre- or corequisite: PHYSICS 45.
Terms: Aut | Units: 1

PHYSICS 50: Observational Astronomy Laboratory

Introduction to observational astronomy emphasizing the use of optical telescopes. Observations of stars, nebulae, and galaxies in laboratory sessions with telescopes at the Stanford Student Observatory. Meets at the observatory one evening per week from dusk until well after dark, in addition to day-time lectures each week. No previous physics required. Limited enrollment.
Terms: Aut, Sum | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

PHYSICS 59: Frontiers of Physics Research

Recommended for prospective Physics or Engineering Physics majors or anyone with an interest in learning about the big questions and unknowns that physicists tackle in their research at Stanford. Weekly faculty presentations, in some cases followed by tours of experimental laboratories where the research is conducted.
Terms: Aut | Units: 1

PHYSICS 61: Mechanics and Special Relativity

(First in a three-part advanced freshman physics series: PHYSICS 61, PHYSICS 63, PHYSICS 65.) This course covers Einstein's special theory of relativity and Newtonian mechanics at a level appropriate for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics, or are interested in a rigorous treatment of physics. Postulates of special relativity, simultaneity, time dilation, length contraction, the Lorentz transformation, causality, and relativistic mechanics. Central forces, contact forces, linear restoring forces. Momentum transport, work, energy, collisions. Angular momentum, torque, moment of inertia in three dimensions. Damped and forced harmonic oscillators. Uses the language of vectors and multivariable calculus. Recommended prerequisites: Mastery of mechanics at the level of AP Physics C and AP Calculus BC or equivalent. Corequisite: MATH 51.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints