2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

321 - 330 of 440 results for: CSI::certificate ; Currently searching offered courses. You can also include unoffered courses

MED 232: Discussions in Global Health

The goal of this interactive series is to encourage students to think broadly about the variety of activities encompassed within global health and the roles of various entities, including NGOs, governments, and healthcare providers, in responding to large-scale health crises, building health systems, and caring for patients in developing countries. Examines challenges in global health such as organizing medical responses to natural disasters, providing healthcare to societies in conflict, and integrating traditional and modern approaches to healing. Case studies are used to critique strategies employed by organizations that work to improve medical care in poor settings.
Terms: Aut | Units: 2 | Repeatable for credit | Grading: Medical Satisfactory/No Credit

MED 233: Global Health: Beyond Diseases and International Organizations

Provides multidisciplinary trainees insight into over-arching themes of global health. Topics include systemic issues affecting healthcare progress globally, ethical and thoughtful approaches to solving these issues, as well as economics, water sanitation, public health, organizations in global health, human rights, involvement in NGOs, ethics of overseas work, and other non-medical aspects of this subject. This course will cover some of the essentials of patient care while working in the field as well including child health care, malaria, TB, and HIV. Course only open to graduate and MD/MSPA students. Undergraduates are not eligible to enroll.
Terms: Aut | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

MED 235: Designing Research-Based Interventions to Solve Global Health Problems (AFRICAST 135, AFRICAST 235, EDUC 135, EDUC 335, HRP 235, HUMBIO 26)

The excitement around social innovation and entrepreneurship has spawned numerous startups focused on tackling world problems, particularly in the fields of education and health. The best social ventures are launched with careful consideration paid to research, design, and efficacy. This course offers students insights into understanding how to effectively develop, evaluate, and scale social ventures. Using TeachAIDS (an award-winning nonprofit educational technology social venture used in 78 countries) as a primary case study, students will be given an in-depth look into how the entity was founded and scaled globally. Guest speakers will include world-class experts and entrepreneurs in Philanthropy, Medicine, Communications, Education, and Technology. Open to both undergraduate and graduate students.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit

MED 242: Physicians and Human Rights

Weekly lectures on how human rights violations affect health. Topics include: regional conflict and health, the health status of refugees and internally displaced persons; child labor; trafficking in women and children; HIV/AIDS; torture; poverty, the environment and health; access to clean water; domestic violence and sexual assault; and international availability of drugs. Guest speakers from national and international NGOs including Doctors Without Borders; McMaster University Institute for Peace Studies; UC Berkeley Human Rights Center; Kiva.
Terms: Win | Units: 1 | Grading: Medical Satisfactory/No Credit
Instructors: Laws, A. (PI)

MED 252: Outcomes Analysis (BIOMEDIN 251, HRP 252)

Methods of conducting empirical studies which use large existing medical, survey, and other databases to ask both clinical and policy questions. Econometric and statistical models used to conduct medical outcomes research. How research is conducted on medical and health economics questions when a randomized trial is impossible. Problem sets emphasize hands-on data analysis and application of methods, including re-analyses of well-known studies. Prerequisites: one or more courses in probability, and statistics or biostatistics.
Terms: Spr | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

MED 262: Economics of Health Improvement in Developing Countries (ECON 127)

Application of economic paradigms and empirical methods to health improvement in developing countries. Emphasis is on unifying analytic frameworks and evaluation of empirical evidence. How economic views differ from public health, medicine, and epidemiology; analytic paradigms for health and population change; the demand for health; the role of health in international development. Prerequisites: ECON 50 and ECON 102B.
Terms: Spr | Units: 5 | Grading: Medical Option (Med-Ltr-CR/NC)
Instructors: Alsan, M. (PI)

MED 272A: Biodesign Innovation: Needs Finding and Concept Creation (BIOE 374A, ME 368A)

In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter 2018), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2018), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturer more »
In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter 2018), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2018), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are expected to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of more than 40 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Terms: Win | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

MED 272B: Biodesign Innovation: Concept Development and Implementation (BIOE 374B, ME 368B)

In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter 2018), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2018), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturer more »
In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter 2018), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2018), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are expected to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of more than 40 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Terms: Spr | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

MED 273: Biodesign for Mobile Health (BIOE 273)

Health care is facing significant cross-industry challenges and opportunities created by a number of factors including: the increasing need for improved access to affordable, high-quality care; growing demand from consumers for greater control of their health and health data; the shift in focus from 'sick care' to prevention and health optimization; aging demographics and the increased burden of chronic conditions; and new emphasis on real-world, measurable health outcomes for individuals and populations. Moreover, the delivery of health information and services is no longer tied to traditional 'brick and mortar' hospitals and clinics: it has increasingly become "mobile," enabled by apps, sensors, wearables, and other mobile devices, as well as by the data that these technologies generate. This multifactorial transformation presents opportunities for innovation across the entire cycle of care, from wellness, to acute and chronic diseases, to care at the end of life. But how does one ap more »
Health care is facing significant cross-industry challenges and opportunities created by a number of factors including: the increasing need for improved access to affordable, high-quality care; growing demand from consumers for greater control of their health and health data; the shift in focus from 'sick care' to prevention and health optimization; aging demographics and the increased burden of chronic conditions; and new emphasis on real-world, measurable health outcomes for individuals and populations. Moreover, the delivery of health information and services is no longer tied to traditional 'brick and mortar' hospitals and clinics: it has increasingly become "mobile," enabled by apps, sensors, wearables, and other mobile devices, as well as by the data that these technologies generate. This multifactorial transformation presents opportunities for innovation across the entire cycle of care, from wellness, to acute and chronic diseases, to care at the end of life. But how does one approach innovation in mobile health to address these health care challenges while ensuring the greatest chance of success? At Stanford Biodesign, we believe that innovation is a process that can be learned, practiced, and perfected; and, it starts with a need. In Biodesign for Mobile Health, students will learn about mobile health and the Biodesign needs-driven innovation process from over 50 industry experts. Over the course of ten weeks, these speakers join the teaching team in a dynamic classroom environment that includes lectures, panel discussions, and breakout sessions. These experts represent startups, corporations, venture capital firms, accelerators, research labs, health organizations, and more. Student teams will take actual mobile health challenges and learn how to apply Biodesign innovation principles to research and evaluate needs, ideate solutions, and objectively assess them against key criteria for satisfying the needs. Teams take a hands-on approach with the support of need coaches and mentors. On the final day of class, teams present to a panel of mobile health experts and compete for project extension funding. Limited enrollment, by application only. Friday section will be used for team projects and for scheduled workshops.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit

MED 275B: Biodesign Fundamentals

MED 275B is an introduction to the Biodesign process for health technology innovation. This team-based course emphasizes interdisciplinary collaboration and hands-on learning at the intersection of medicine and technology. Students will work on projects in the space of medical devices, digital health, and healthcare technologies with the assistance of clinical and industry mentors. Applicants from all majors and stages in their education welcome. n nStudents will work in teams to develop solutions to current unmet medical needs, starting with a deep dive into understanding and characterizing important unmet medical needs through disease research, competitive analysis, market research, and stakeholder analysis. In the latter part of the course, students will go through the design cycle and build prototypes to their needs. The course will conclude with a pitch day where students will present and demonstrate their solution to a panel of judges, including prominent academics, industry professionals, and investors. Other topics that will be discussed include FDA regulation of medical technology, intellectual property, value proposition, and business model development. There will be guest speakers from Google X, IDEO, and more.
Terms: Spr | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints