2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

111 - 120 of 242 results for: all courses

EESS 57Q: Climate Change from the Past to the Future (EARTHSYS 57Q)

Preference to sophomores. Numeric models to predict how climate responds to increase of greenhouse gases. Paleoclimate during times in Earth's history when greenhouse gas concentrations were elevated with respect to current concentrations. Predicted scenarios of climate models and how these models compare to known hyperthermal events in Earth history. Interactions and feedbacks among biosphere, hydrosphere, atmosphere, and lithosphere. Topics include long- and short-term carbon cycle, coupled biogeochemical cycles affected by and controlling climate change, and how the biosphere responds to climate change. Possible remediation strategies.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA

EESS 111: Biology and Global Change (BIO 117, EARTHSYS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EESS 117: Earth Sciences of the Hawaiian Islands (EARTHSCI 117, EARTHSYS 117)

Progression from volcanic processes through rock weathering and soil-ecosystem development to landscape evolution. The course starts with an investigation of volcanic processes, including the volcano structure, origin of magmas, physical-chemical factors of eruptions. Factors controlling rock weathering and soil development, including depth and nutrient levels impacting plant ecosystems, are explored next. Geomorphic processes of landscape evolution including erosion rates, tectonic/volcanic activity, and hillslope stability conclude the course. Methods for monitoring and predicting eruptions, defining spatial changes in landform, landform stability, soil production rates, and measuring biogeochemical processes are covered throughout the course. This course is restricted to students accepted into the Earth Systems of Hawaii Program.
Terms: Aut | Units: 4 | UG Reqs: WAY-SMA

EESS 151: Biological Oceanography (EARTHSYS 151, EARTHSYS 251, EESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (EESS/ EARTHSYS 152/252). Prerequisites: BIO 43 and EESS 8 or equivalent.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA

EESS 152: Marine Chemistry (EARTHSYS 152, EARTHSYS 252, EESS 252)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (EESS/ EARTHSYS 151/251)
Terms: Spr | Units: 3-4 | UG Reqs: WAY-AQR, WAY-SMA

EESS 155: Science of Soils (EARTHSYS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EESS 156: Soil and Water Chemistry (EARTHSYS 156, EARTHSYS 256, EESS 256)

(Graduate students register for 256.) Practical and quantitative treatment of soil processes affecting chemical reactivity, transformation, retention, and bioavailability. Principles of primary areas of soil chemistry: inorganic and organic soil components, complex equilibria in soil solutions, and adsorption phenomena at the solid-water interface. Processes and remediation of acid, saline, and wetland soils. Recommended: soil science and introductory chemistry and microbiology.
Last offered: Winter 2014 | UG Reqs: GER: DB-NatSci, WAY-SMA

EESS 184: Climate and Agriculture (EARTHSYS 184, EARTHSYS 284, EESS 284)

The effects of climate change on global agriculture and food security, and the effects of agriculture on climate change. An overview of different lines of evidence used to measure impacts and adaptations, and to quantify future impacts, risks, and adaptation needs for agro-ecosystems and society. Enrollment limited to 25; priority to juniors, seniors, and graduate students. Prerequisites: ECON 106/206 or permission of instructor.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA
Instructors: Lobell, D. (PI)

ENERGY 101: Energy and the Environment (EARTHSYS 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENERGY 102: Renewable Energy Sources and Greener Energy Processes (EARTHSYS 102)

The energy sources that power society are rooted in fossil energy although energy from the core of the Earth and the sun is almost inexhaustible; but the rate at which energy can be drawn from them with today's technology is limited. The renewable energy resource base, its conversion to useful forms, and practical methods of energy storage. Geothermal, wind, solar, biomass, and tidal energies; resource extraction and its consequences. Recommended: MATH 21 or 42.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints