2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

291 - 297 of 297 results for: ME

ME 457: Fluid Flow in Microdevices

Physico-chemical hydrodynamics. Creeping flow, electric double layers, and electrochemical transport such as Nernst-Planck equation; hydrodynamics of solutions of charged and uncharged particles. Device applications include microsystems that perform capillary electrophoresis, drug dispension, and hybridization assays. Emphasis is on bioanalytical applications where electrophoresis, electro-osmosis, and diffusion are important. Prerequisite: consent of instructor.

ME 461: Advanced Topics in Turbulence

Turbulence phenomenology; statistical description and the equations governing the mean flow; fluctuations and their energetics; turbulence closure problem, two-equation turbulence models, and second moment closures; non-local effect of pressure; rapid distortion analysis and effect of shear and compression on turbulence; effect of body forces on turbulent flows; buoyancy-generated turbulence; suppression of turbulence by stratification; turbulent flows of variable density; effect of rotation on homogeneous turbulence; turbulent flows with strong vortices. Prerequisites: 351B and 361A, or consent of instructor.

ME 463: Advanced Topics in Plasma Science and Engineering

Research areas such as plasma diagnostics, plasma transport, waves and instabilities, and engineering applications.

ME 471: Turbulent Combustion

Basis of turbulent combustion models. Assumption of scale separation between turbulence and combustion, resulting in Reynolds number independence of combustion models. Level-set approach for premixed combustion. Different regimes of premixed turbulent combustion with either kinematic or diffusive flow/chemistry interaction leading to different scaling laws and unified expression for turbulent velocity in both regimes. Models for non-premixed turbulent combustion based on mixture fraction concept. Analytical predictions for flame length of turbulent jets and NOx formation. Partially premixed combustion. Analytical scaling for lift-off heights of lifted diffusion.

ME 484: Computational Methods in Cardiovascular Bioengineering (BIOE 484)

Lumped parameter, one-dimensional nonlinear and linear wave propagation, and three-dimensional modeling techniques applied to simulate blood flow in the cardiovascular system and evaluate the performance of cardiovascular devices. Construction of anatomic models and extraction of physiologic quantities from medical imaging data. Problems in blood flow within the context of disease research, device design, and surgical planning.

ME 495A: ME Seminar Series: Product Design

Seminars will feature accomplished product designers and product design researchers. Guest speakers will come from the U.S. and internationally, and will present on topics of current interest to the Product Design Community.

ME 495B: ME Seminar Series: At the Interface between Mechanical Engineering and Biology

Seminars will feature early career mechanical engineers working on leading edge problems in biomechanical engineering. Topics include mechanobiology, cell mechanics, transport phenomena in biological systems, bio-inspired design, design and analysis of biodevices or bioinstrumentation, biomaterials, and modeling of physiological systems. Guest speakers will come from top universities within the U.S. and internationally, and will discuss both their past research and plans for building a research program in the future.
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints