2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

31 - 40 of 131 results for: all courses

CME 108: Introduction to Scientific Computing (MATH 114)

Introduction to Scientific Computing Numerical computation for mathematical, computational, physical sciences and engineering: error analysis, floating-point arithmetic, nonlinear equations, numerical solution of systems of algebraic equations, banded matrices, least squares, unconstrained optimization, polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations, truncation error, numerical stability for time dependent problems and stiffness. Implementation of numerical methods in MATLAB programming assignments. Prerequisites: MATH 51, 52, 53; prior programming experience (MATLAB or other language at level of CS 106A or higher).
Terms: Win, Sum | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR

CS 102: Big Data: Tools and Techniques, Discoveries and Pitfalls

Aimed primarily at students who may not major in CS but want to learn about big data and apply that knowledge in their areas of study. Many of the world's biggest discoveries and decisions in science, technology, business, medicine, politics, and society as a whole, are now being made on the basis of analyzing massive data sets, but it is surprisingly easy to come to false conclusions from data analysis alone, and privacy of data connected to individuals can be a major concern. This course provides a broad introduction to big data: historical context and case studies; privacy issues; data analysis techniques including databases, data mining, and machine learning; sampling and statistical significance; data analysis tools including spreadsheets, SQL, Python, R; data visualization techniques and tools. Tools and techniques are hands-on but at a cursory level, providing a basis for future exploration and application. Prerequisites: high school AP computer science, CS106A, or other equivalent programming experience; comfort with statistics and spreadsheets helpful but not required.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-AQR

CS 109: Introduction to Probability for Computer Scientists

Topics include: counting and combinatorics, random variables, conditional probability, independence, distributions, expectation, point estimation, and limit theorems. Applications of probability in computer science including machine learning and the use of probability in the analysis of algorithms. Prerequisites: 103, 106B or X, multivariate calculus at the level of MATH 51 or CME 100 or equivalent.
Terms: Win, Spr, Sum | Units: 3-5 | UG Reqs: WAY-AQR, WAY-FR, GER:DB-EngrAppSci

CSRE 180B: Introduction to Data Analysis (SOC 180B, SOC 280B)

Methods for analyzing and evaluating quantitative data in sociological research. Students will be taught how to run and interpret multivariate regressions, how to test hypotheses, and how to read and critique published data analyses. Limited enrollment; preference to Sociology majors.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-SocSci, WAY-AQR, WAY-SI
Instructors: Carian, E. (PI)

EARTHSYS 11: Introduction to Geology (GS 1)

Lectures, hands-on laboratories, in-class activities, and one field trip. Focus is on the physical and chemical processes of heat and mass transfer within the earth and its fluid envelopes, including deep-earth, crustal, surface, and atmospheric processes. Topics include plate tectonics, the cycling and formation of different types of rocks, and how geologists use rocks to understand Earth's history.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

EARTHSYS 101: Energy and the Environment (ENERGY 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

EARTHSYS 104: The Water Course (GEOPHYS 70)

The pathway that water takes from rainfall to the tap using student home towns as an example. How the geological environment controls the quantity and quality of water; taste tests of water from around the world. Current U.S. and world water supply issues.
Last offered: Winter 2016 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

EARTHSYS 110: Introduction to the foundations of contemporary geophysics (GEOPHYS 110)

Introduction to the foundations of contemporary geophysics. Topics drawn from broad themes in: whole Earth geodynamics, geohazards, natural resources, and enviroment. In each case the focus is on how the interpretation of a variety of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetics, and remote sensing) can be used to provide fundamental insight into the behavior of the Earth. Prerequisite: CME 100 or MA TH 51, or co-registration in either.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

EARTHSYS 113: Earthquakes and Volcanoes (GEOPHYS 90)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci, WAY-AQR

EARTHSYS 140: The Energy-Water Nexus (GEOPHYS 80)

Energy, water, and food are our most vital resources constituting a tightly intertwined network: energy production requires water, transporting and treating water needs energy, producing food requires both energy and water. The course is an introduction to learn specifically about the links between energy and water. Students will look first at the use of water for energy production, then at the role of energy in water projects, and finally at the challenge in figuring out how to keep this relationship as sustainable as possible. Students will explore case examples and are encouraged to contribute examples of concerns for discussion as well as suggest a portfolio of sustainable energy options.
Last offered: Spring 2014 | UG Reqs: WAY-AQR
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints