2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

21 - 30 of 92 results for: GEOPHYS

GEOPHYS 181: Fluids and Flow in the Earth: Computational Methods (GEOPHYS 203)

Interdisciplinary problems involving the state and movement of fluids in crustal systems, and computational methods to model these processes. Examples of processes include: nonlinear, time-dependent flow in porous rocks; coupling in porous rocks between fluid flow, stress, deformation, and heat and chemical transport; percolation of partial melt; diagenetic processes; pressure solution and the formation of stylolites; and transient pore pressure in fault zones. MATLAB, Lattice-Boltzmann, and COMSOL Multiphysics. Term project. No experience with COMSOL Multiphysics required. Offered every other year, winter quarter.
Last offered: Winter 2015

GEOPHYS 182: Reflection Seismology (GEOPHYS 222)

The principles of seismic reflection profiling, focusing on methods of seismic data acquisition and seismic data processing for hydrocarbon exploration.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci

GEOPHYS 183: Reflection Seismology Interpretation (GEOPHYS 223, GS 223)

The structural and stratigraphic interpretation of seismic reflection data, emphasizing hydrocarbon traps in two and three dimensions on industry data, including workstation-based interpretation. Lectures only, 1 unit. Prerequisite: 222, or consent of instructor. ( Geophys 183 must be taken for a minimum of 3 units to be eligible for Ways credit).
Terms: Spr | Units: 1-4 | UG Reqs: WAY-SMA

GEOPHYS 184: Journey to the Center of the Earth (GEOPHYS 274, GS 107, GS 207)

The interconnected set of dynamic systems that make up the Earth. Focus is on fundamental geophysical observations of the Earth and the laboratory experiments to understand and interpret them. What earthquakes, volcanoes, gravity, magnetic fields, and rocks reveal about the Earth's formation and evolution. Offered every other year, winter quarter. Next offering Winter 2013-14.
Last offered: Winter 2014 | UG Reqs: WAY-SMA

GEOPHYS 185: Rock Physics for Reservoir Characterization (GEOPHYS 260)

How to integrate well log and laboratory data to determine and theoretically generalize rock physics transforms between sediment wave properties (acoustic and elastic impendence), bulk properties (porosity, lithology, texture, permeability), and pore fluid conditions (pore fluid and pore pressure). These transforms are used in seismic interpretation for reservoir properties, and seismic forward modeling in what-if scenarios. Offered every other year, spring quarter.
Terms: Spr | Units: 3

GEOPHYS 186: Tectonophysics (GEOPHYS 290)

The physics of faulting and plate tectonics. Topics: plate driving forces, lithospheric rheology, crustal faulting, and the state of stress in the lithosphere. Exercises: lithospheric temperature and strength profiles, calculation of seismic strain from summation of earthquake moment tensors, slip on faults in 3D, and stress triggering and inversion of stress from earthquake focal mechanisms. Offered every other year, winter quarter.

GEOPHYS 190: Near-Surface Geophysics

Introduction to the integration of geophysical field measurements and laboratory measurements for imaging and characterizing the top 100 meters of Earth. Examples will focus on applications related to water resource management. The link between the measured geophysical properties of rocks, soils, and sediments, and their material properties. Forward modeling and inversion of geophysical data sets. Each week includes two hours of lectures; plus one two-hour lab that involves acquisition of field or lab data, or computer modeling/analysis of data. Pre-requisite: CME 100 or Math 51, or co-registration in either.
Last offered: Spring 2015 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

GEOPHYS 191: Observing Freshwater

We will study estimates of the components of the land hydrological cycle using in-situ and satellite observations and model output. Hydrological variables are rainfall, snow, water vapor, soil moisture, stream discharge and groundwater; other variables are vegetation, surface temperature, soil types, land use and surface topography. We focus on observations and their role in the water balance of the land surface. In-class lab experience working with data. Group/individual term project & paper & presentation; no final. Pre-requisite: basic familiarity with MATLAB.
Terms: Aut | Units: 3
Instructors: Lakshmi, V. (PI)

GEOPHYS 192: Water governance: interdisciplinary perspectives on critical 21st century challenges

Water is subject to competing uses and interpretations. A critical socioeconomic input and ecosystem service, water is simultaneously imbued with aesthetic, cultural, and spiritual significance. This seminar is predicated on a shared interest in exploring interdisciplinary perspectives on freshwater challenges. The course will draw upon contemporary scholarship in the natural sciences, social sciences, and humanities. We will engage in critical analyses of water challenges (e.g. the water-food-energy nexus, water-related implications of climate change, human access to safe drinking water) and responses (e.g. multi-scalar water governance, integrated water resources management). Case studies from around the world will be used. Students from any discipline are welcome.
Terms: Spr | Units: 1
Instructors: Bakker, K. (PI)

GEOPHYS 196: Undergraduate Research in Geophysics

Field-, lab-, or computer-based. Faculty supervision. Written reports.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints