2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

81 - 90 of 148 results for: MS&E

MS&E 312: Advanced Methods in Numerical Optimization (CME 334)

Topics include interior-point methods, relaxation methods for nonlinear discrete optimization, sequential quadratic programming methods, optimal control and decomposition methods. Topic chosen in first class; different topics for individuals or groups possible. Individual or team projects. May be repeated for credit.
Terms: Aut | Units: 3 | Repeatable for credit

MS&E 314: Linear and Conic Optimization with Applications (CME 336)

Linear, semidefinite, conic, and convex nonlinear optimization problems as generalizations of classical linear programming. Algorithms include the interior-point, barrier function, and cutting plane methods. Related convex analysis, including the separating hyperplane theorem, Farkas lemma, dual cones, optimality conditions, and conic inequalities. Complexity and/or computation efficiency analysis. Applications to combinatorial optimization, sensor network localization, support vector machine, and graph realization. Prerequisite: MS&E 211 or equivalent.
Terms: Win | Units: 3
Instructors: Ye, Y. (PI)

MS&E 315: Numerical Optimization (CME 304)

Solution of nonlinear equations; unconstrained optimization; linear programming; quadratic programming; global optimization; general linearly and nonlinearly constrained optimization. Theory and algorithms to solve these problems. Prerequisite: background in analysis and numerical linear algebra.
Terms: Win | Units: 3
Instructors: Murray, W. (PI)

MS&E 316: Discrete Mathematics and Algorithms (CME 305)

Topics: Basic Algebraic Graph Theory, Matroids and Minimum Spanning Trees, Submodularity and Maximum Flow, NP-Hardness, Approximation Algorithms, Randomized Algorithms, The Probabilistic Method, and Spectral Sparsification using Effective Resistances. Topics will be illustrated with applications from Distributed Computing, Machine Learning, and large-scale Optimization. Prerequisites: CS 261 is highly recommended, although not required.
Terms: Win | Units: 3

MS&E 317: Algorithms for Modern Data Models (CS 263)

We traditionally think of algorithms as running on data available in a single location, typically main memory. In many modern applications including web analytics, search and data mining, computational biology, finance, and scientific computing, the data is often too large to reside in a single location, is arriving incrementally over time, is noisy/uncertain, or all of the above. Paradigms such as map-reduce, streaming, sketching, Distributed Hash Tables, Bulk Synchronous Processing, and random walks have proved useful for these applications. This course will provide an introduction to the design and analysis of algorithms for these modern data models. Prerequisite: Algorithms at the level of CS 261.
Terms: Spr | Units: 3
Instructors: Goel, A. (PI)

MS&E 318: Large-Scale Numerical Optimization (CME 338)

The main algorithms and software for constrained optimization emphasizing the sparse-matrix methods needed for their implementation. Iterative methods for linear equations and least squares. The simplex method. Basis factorization and updates. Interior methods. The reduced-gradient method, augmented Lagrangian methods, and SQP methods. Prerequisites: Basic numerical linear algebra, including LU, QR, and SVD factorizations, and an interest in MATLAB, sparse-matrix methods, and gradient-based algorithms for constrained optimization. Recommended: MS&E 310, 311, 312, 314, or 315; CME 108, 200, 302, 304, 334, or 335.
Terms: Spr | Units: 3

MS&E 321: Stochastic Systems

Topics in stochastic processes, emphasizing applications. Markov chains in discrete and continuous time; Markov processes in general state space; Lyapunov functions; regenerative process theory; renewal theory; martingales, Brownian motion, and diffusion processes. Application to queueing theory, storage theory, reliability, and finance. Prerequisites: 221 or STATS 217; MATH 113, 115. (Glynn)
Terms: Spr | Units: 3
Instructors: Glynn, P. (PI)

MS&E 322: Stochastic Calculus and Control

Ito integral, existence and uniqueness of solutions of stochastic differential equations (SDEs), diffusion approximations, numerical solutions of SDEs, controlled diffusions and the Hamilton-Jacobi-Bellman equation, and statistical inference of SDEs. Applications to finance and queueing theory. Prerequisites: 221 or STATS 217: MATH 113, 115.
Terms: Spr | Units: 3
Instructors: Glynn, P. (PI)

MS&E 331: Introduction to Computational Social Science

With a vast amount of data now collected on our online and offline actions -- from what we buy, to where we travel, to who we interact with -- we have an unprecedented opportunity to study complex social systems. This opportunity, however, comes with scientific, engineering, and ethical challenges. In this hands-on course, we develop ideas from computer science and statistics to address problems in sociology, economics, political science, and beyond. We cover techniques for collecting and parsing data, methods for large-scale machine learning, and principles for effectively communicating results. To see how these techniques are applied in practice, we discuss recent research findings in a variety of areas.
Terms: Aut | Units: 3
Instructors: Goel, S. (PI)

MS&E 333: Social Algorithms

This seminar will introduce students to research in the field of social algorithms, including networked markets, collective decision making, recommendation and reputation systems, prediction markets, social choice theory, and models of influence and contagion.
Terms: Spr | Units: 1
Instructors: Goel, A. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints