2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

51 - 60 of 84 results for: ENGR

ENGR 202S: Writing: Special Projects

Writing tutorial for students working on non-course projects such as theses, journal articles, and conference papers. Weekly individual conferences.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit
Instructors: McDevitt, M. (PI)

ENGR 202W: Technical Writing

How to write clear, concise, and well-ordered technical prose. Principles of editing for structure and style. Applications to a variety of genres in engineering and science.
Terms: Aut, Win, Spr | Units: 3

ENGR 205: Introduction to Control Design Techniques

Review of root-locus and frequency response techniques for control system analysis and synthesis. State-space techniques for modeling, full-state feedback regulator design, pole placement, and observer design. Combined observer and regulator design. Lab experiments on computers connected to mechanical systems. Prerequisites: 105, MATH 103, 113. Recommended: Matlab.
Terms: Aut | Units: 3

ENGR 206: Control System Design

Design and construction of a control system and working plant. Topics include: linearity, actuator saturation, sensor placement, controller and model order; linearization by differential actuation and sensing; analog op-amp circuit implementation. Emphasis is on qualitative aspects of analysis and synthesis, generation of candidate design, and engineering tradeoffs in system selection. Large team-based project. Limited enrollment. Prerequisite: 105.

ENGR 207A: Linear Control Systems I

Introduction to control of discrete-time linear systems. State-space models. Controllability and observability. The linear quadratic regulator. Prerequisite: 105 or 205.
Last offered: Autumn 2007

ENGR 207B: Linear Control Systems II

Probabilistic methods for control and estimation. Statistical inference for discrete and continuous random variables. Linear estimation with Gaussian noise. The Kalman filter. Prerequisite: EE 263.
Terms: Win | Units: 3
Instructors: Lall, S. (PI)

ENGR 209A: Analysis and Control of Nonlinear Systems

Introduction to nonlinear phenomena: multiple equilibria, limit cycles, bifurcations, complex dynamical behavior. Planar dynamical systems, analysis using phase plane techniques. Describing functions. Lyapunov stability theory. SISO feedback linearization, sliding mode control. Design examples. Prerequisite: 205.
Terms: Win | Units: 3

ENGR 210: Perspectives in Assistive Technology (ENGR 110) (ENGR 110)

Seminar and student project course. Explores the medical, social, ethical, and technical challenges surrounding the design, development, and use of technologies that improve the lives of people with disabilities and older adults. Guest lecturers include engineers, clinicians, and individuals with disabilities. Tours of local facilities, assistive technology faire, and movie screening. Juniors, seniors, and graduate students from any discipline welcome. Enrollment limited to class capacity of 45. 1 unit for seminar attendance only (CR/NC) or individual project (letter grade). 3 units for students who pursue a team-based assistive technology project. Projects can be continued as independent study in Spring Quarter. See http://engr110.stanford.edu/. Service Learning Course (certified by Haas Center for Public Service).
Terms: Win | Units: 1-3
Instructors: Jaffe, D. (PI)

ENGR 213: Solar Decathlon

Open to all engineering majors. Project studio for all work related to the Solar Decathlon 2013 competition. Each student will develop a personal work plan for the quarter with his or her advisor and perform multidisciplinary collaboration on designing systems for the home or pre-construction planning. Work may continue through the summer as a paid internship, as well as through the next academic year. For more information about the team and the competition, please visit solardecathlon.stanford.edu
Last offered: Spring 2014

ENGR 213A: Solar Decathlon 2015 (ENGR 113A)

Open to all majors. Seminar / Lab format course facilitates the student-led administration, conception, development, and execution of the Solar Decathlon 2015 competition entry sponsored by the US Department of Energy. (http://www.solardecathlon.gov/) Students shall learn best practices in creating design teams to address multi-disciplinary design problems. Students shall work both as individuals and in teams across multiple Stanford SD2015 phases of project management, research, fundraising, design, engineering, contracting, construction administration, and competitive testing in Irvine CA.
Last offered: Autumn 2014 | Repeatable 4 times (up to 8 units total)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints