2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

31 - 40 of 71 results for: AA

AA 236B: Spacecraft Design Laboratory

Continuation of 236A. Emphasis is on practical application of systems engineering to the life cycle program of spacecraft design, testing, launching, and operations. Prerequisite: 236A or consent of instructor.
Terms: Win | Units: 3-5

AA 236C: Spacecraft Design Laboratory

Terms: Spr | Units: 3-5

AA 240A: Analysis of Structures

Elements of two-dimensional elasticity theory. Boundary value problems; energy methods; analyses of solid and thin walled section beams, trusses, frames, rings, monocoque and semimonocoque structures. Prerequisite: ENGR 14 or equivalent.
Terms: Aut | Units: 3

AA 240B: Analysis of Structures

Thin plate analysis. Structural stability. Material behavior: plasticity and fracture. Introduction of finite element analysis; truss, frame, and plate structures. Prerequisite: 240A or consent of instructor.
Terms: Win | Units: 3

AA 241A: Introduction to Aircraft Design, Synthesis, and Analysis

New aircraft systems emphasizing commercial aircraft. Economic and technological factors that create new aircraft markets. Determining market demands and system mission performance requirements; optimizing configuration to comply with requirements; the interaction of disciplines including aerodynamics, structures, propulsion, guidance, payload, ground support, and parametric studies. Applied aerodynamic and design concepts for use in configuration analysis. Application to a student-selected aeronautical system; applied structural fundamentals emphasizing fatigue and fail-safe considerations; design load determination; weight estimation; propulsion system performance; engine types; environmental problems; performance estimation. Direct/indirect operating costs prediction and interpretation. Aircraft functional systems; avionics; aircraft reliability and maintainability. Prerequisite: 100 or equivalent.
Terms: Aut | Units: 3
Instructors: Kroo, I. (PI)

AA 241B: Introduction to Aircraft Design, Synthesis, and Analysis

New aircraft systems emphasizing commercial aircraft. Economic and technological factors that create new aircraft markets. Determining market demands and system mission performance requirements; optimizing configuration to comply with requirements; the interaction of disciplines including aerodynamics, structures, propulsion, guidance, payload, ground support, and parametric studies. Applied aerodynamic and design concepts for use in configuration analysis. Application to a student-selected aeronautical system; applied structural fundamentals emphasizing fatigue and fail-safe considerations; design load determination; weight estimation; propulsion system performance; engine types; environmental problems; performance estimation. Direct/indirect operating costs prediction and interpretation. Aircraft functional systems; avionics; aircraft reliability and maintainability. Prerequisite: 100 or equivalent.
Terms: Win | Units: 3
Instructors: Kroo, I. (PI)

AA 241X: Autonomous Aircraft: Design/Build/Fly

Students grouped according to their expertise to carry out the multidisciplinary design of a solar-powered autonomous aircraft that must meet a clearly stated set of design requirements. Design and construction of the airframe, integration with existing guidance, navigation, and control systems, and development and operation of the resulting design. Design reviews and reports. Prerequisites: expertise in any of the following disciplines by having satisfied the specified courses or equivalent work elsewhere: conceptual design (241A,B); applied aerodynamics (200A,B); structures (240A); composite manufacturing experience; guidance and control (208/271, ENGR 205).
Terms: Spr | Units: 3

AA 242A: Classical Dynamics

Accelerating and rotating reference frames. Kinematics of rigid body motion; Euler angles, direction cosines. D'Alembert's principle, equations of motion. Inertia properties of rigid bodies. Dynamics of coupled rigid bodies. Lagrange's equations and their use. Dynamic behavior, stability, and small departures from equilibrium. Prerequisite: ENGR 15 or equivalent.
Terms: Aut | Units: 3

AA 242B: Mechanical Vibrations (ME 242B)

For M.S.-level graduate students. Covers the vibrations of discrete systems and continuous structures. Introduction to the computational dynamics of linear engineering systems. Review of analytical dynamics of discrete systems; undamped and damped vibrations of N-degree-of-freedom systems; continuous systems; approximation of continuous systems by displacement methods; solution methods for the Eigenvalue problem; direct time-integration methods. Prerequisites: AA 242A or equivalent (recommended but not required); basic knowledge of linear algebra and ODEs; no prior knowledge of structural dynamics is assumed.
Last offered: Spring 2016

AA 244A: Introduction to Plasma Physics and Engineering

Physics and engineering of plasmas, including space and laboratory plasmas. Debye length and distribution functions. Single-particle motion and drifts. Plasmas as fluids and fluid drifts. Waves in plasmas, including electrostatic and electromagnetic. Diffusion and resistivity. Magnetohydrodynamics.
Terms: Win | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints