2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 28 results for: BIOE

BIOE 41: Physical Biology of Macromolecules

Principles of statistical physics, thermodynamics, and kinetics with applications to molecular biology. Topics include entropy, temperature, chemical forces, enzyme kinetics, free energy and its uses, self assembly, cooperative transitions in macromolecules, molecular machines, feedback, and accurate replication. Prerequisites: MATH 41, 42; CHEM 31A, B (or 31X); strongly recommended: PHYSICS 41, CME 100 or MATH 51, and CME 106; or instructor approval.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

BIOE 123: Biomedical System Prototyping Lab

The Bioengineering System Prototyping Laboratory is a fast-paced, team-based system engineering experience, in which teams of 2-3 students design and build a fermenter that meets a set of common requirements along with a set of unique team-determined requirements. Students learn-by-doing hands-on skills in electronics and mechanical design and fabrication. Teams also develop process skills and an engineering mindset by aligning specifications with requirements, developing output metrics and measuring performance, and creating project proposals and plans. The course culminates in demonstration of a fully functioning fermenter that meets the teams' self-determined metrics.nnLearning goals:n1. Hands-on skills and experience with design, fabrication, integration, and characterization of practical electronic and mechanical hardware systems relevant to Bioengineeringn2. Practice using modern rapid prototyping and device equipment and techniques, including CAD, 3D printing, laser cutting, microcontrollers, design thinkingn3. Experience working as a team to build an end-to-end functional biomedical system (e.g., a fermenter)nnPrerequisites: BIOE 41 and Matlab recommended.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA

BIOE 141B: Senior Capstone Design II

Terms: Win | Units: 4

BIOE 191: Bioengineering Problems and Experimental Investigation

Directed study and research for undergraduates on a subject of mutual interest to student and instructor. Prerequisites: consent of instructor and adviser. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit

BIOE 191X: Out-of-Department Advanced Research Laboratory in Bioengineering

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable 15 times (up to 60 units total)

BIOE 196: INTERACTIVE MEDIA AND GAMES (BIOPHYS 196)

Interactive media and games increasingly pervade and shape our society. In addition to their dominant roles in entertainment, video games play growing roles in education, arts, and science. This seminar series brings together a diverse set of experts to provide interdisciplinary perspectives on these media regarding their history, technologies, scholarly research, industry, artistic value, and potential future.
Terms: Aut, Win, Spr | Units: 1 | Repeatable 3 times (up to 3 units total)

BIOE 211: Biophysics of Multi-cellular Systems and Amorphous Computing (BIOE 311, BIOPHYS 311, DBIO 211)

Provides an interdisciplinary perspective on the design, emergent behavior, and functionality of multi-cellular biological systems such as embryos, biofilms, and artificial tissues and their conceptual relationship to amorphous computers. Students discuss relevant literature and introduced to and apply pertinent mathematical and biophysical modeling approaches to various aspect multi-cellular systems, furthermore carry out real biology experiments over the web. Specific topics include: (Morphogen) gradients; reaction-diffusion systems (Turing patterns); visco-elastic aspects and forces in tissues; morphogenesis; coordinated gene expression, genetic oscillators and synchrony; genetic networks; self-organization, noise, robustness, and evolvability; game theory; emergent behavior; criticality; symmetries; scaling; fractals; agent based modeling. The course is geared towards a broadly interested graduate and advanced undergraduates audience such as from bio / applied physics, computer science, developmental and systems biology, and bio / tissue / mechanical / electrical engineering. Prerequisites: Previous knowledge in one programming language - ideally Matlab - is recommended; undergraduate students benefit from BIOE 41, BIOE 42, or equivalent.
Terms: Win | Units: 2-3

BIOE 220: Introduction to Imaging and Image-based Human Anatomy (RAD 220)

Focus on learning the fundamentals of each imaging modality including X-ray Imaging, Ultrasound, CT, and MRI, to learn normal human anatomy and how it appears on medical images, to learn the relative strengths of the modalities, and to answer, "What am I looking at?" Course website: http://bie220.stanford.edu
Terms: Win | Units: 3

BIOE 221: Physics and Engineering of Radionuclide Imaging (RAD 221)

Physics, instrumentation, and algorithms for positron emission tomography (PET) and single photon emission computed tomography (SPECT). Topics include basic physics of photon emission and detection, electronics, system design, strategies for tomographic image reconstruction, data correction algorithms, methods of image quantification, and image quality assessment, and current developments in the field. Prerequisites: A year of university mathematics and physics.
Terms: Win | Units: 3

BIOE 224: Probes and Applications for Multi-modality Molecular Imaging of Living Subjects (RAD 224)

Focuses on molecular contrast agents (a.k.a. "probes") that interrogate and target specific cellular and molecular disease mechanisms. Covers the ideal characteristics of molecular probes and how to optimize their design for use as effective imaging reagents that enables readout of specific steps in biological pathways and reveal the nature of disease through noninvasive imaging assays. Prerequisites: none.
Terms: Win | Units: 4 | Repeatable 2 times (up to 8 units total)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints